THE QUEST FOR LESS CO₂: LEARNING FROM CCS IMPLEMENTATION IN CANADA

A Case Study on Shell’s Quest CCS Project
The Quest for less CO2: Learning from CCS Implementation in Canada

CAUTIONARY NOTE

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this report “Shell group” and “Royal Dutch Shell” are sometimes used to connote the entire group of companies in which Royal Dutch Shell plc and its subsidiaries are involved. In the report all references to “Shell” refer specifically to Shell’s oil sands business in Canada. Likewise, the words “we”, “us” and “our” are also used to refer to Shell’s oil sands business in Canada generically to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Dutch subsidiaries” and “Shell companies” as used in this report refer to companies over which Royal Dutch Shell plc has ultimate financial or legal control.

Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. In this report, joint ventures and associates may also be referred to as “equity-accounted investments”.

The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Royal Dutch Shell in a venture, partnership or company, after exclusion of all third-party interest.

This report contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “schedule”, “shall”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements contained in the report, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserve estimates; (f) loss of market share and industry competition; (g) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (h) economic and financial market conditions in various countries and regions; (i) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this report are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s Form 20-F for the year ended December 31, 2014 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressively qualify all forward-looking statements contained in this report and should be considered by the reader.

The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Royal Dutch Shell in a venture, partnership or company, after exclusion of all third-party interest.

© 2015 Shell International B.V.

TABLE OF CONTENTS

1. Quest project background
2. Precedent-setting collaboration to advance CCS policy frameworks
3. Earning stakeholder trust & confidence
4. Capture technology
5. Cost effectiveness through smart construction
6. Conclusion
WHAT’S IN A NAME?
The name ‘Quest’ from the words ‘quest’ and ‘sequester’:

QUEST – “search or pursuit in order to find something”
Pursuing a game-changing approach to managing CO₂

SEQUESTER – “to remove, separate and discard or exile”. Describes what Quest is doing with the CO₂ captured, by permanently storing it deep underground.

THE QUEST FOR LESS CO₂: LEARNING FROM CCS IMPLEMENTATION IN CANADA
A Case Study on Shell’s Quest CCS Project

Quest is the world’s first commercial-scale carbon capture and storage (CCS) project in an industrial processing facility, designed to capture and permanently store more than one million tonnes of CO₂ annually - equivalent to the emissions from approximately 250,000 cars. Quest is an important project for Shell, demonstrating integrated CCS operations as a model for advancing and deploying CCS technology and supporting the company’s commitment to action on climate change.

Through comprehensive funding agreements with the Canadian and Alberta governments, Shell has agreed to share its extensive experience and lessons learned through implementing CCS, such that globally Quest can serve as a model for advancing and deploying CCS in oil sands and other industrial operations.

The Quest for less CO₂ project is built on behalf of the Athabasca Oil Sands Project (AOSP) joint venture owners: Shell Canada Energy (Operator and 60% owner), Marathon Oil Canada Corporation (20%), with support from the Governments of Canada and Alberta. The AOSP includes the Muskeg River and Jackpine mines (located northeast of Fort McMurray, Alberta), the Scotford Upgrader and the Quest facility (both located near Fort Saskatchewan, Alberta).

The Quest project (C$120M), as well as in SaskPower’s Boundary Dam project. Boundary Dam is a post-combustion carbon capture facility at a coal-fired power plant and uses Shell Cansolv technology.

Shell progressed engineering studies and early feasibility work for a potential project during the early 2000s. Then towards the middle of that decade, CCS took on new importance for Shell when the company began focusing on developing a portfolio of CCS projects globally. Having done substantial foundational work, the Quest project was already positioned to lead amongst Shell’s various opportunities.

Upon conclusion of the detailed capture, transport and storage engineering studies and the regulatory processes in Q3 of 2012, the AOSP joint venture owners took a final investment decision on Quest in September 2012. Early works started in Q4 2012, with construction completed early in 2015. As of November 2015, Quest is on stream and injecting CO₂ as a key technology needed in order to meet the Province’s target reductions for 2030 and 2050. The government struck a special task force on CCS, which included a representative from Shell on one of the working groups. The task force articulated that CCS demonstration projects were needed ahead of regulation to demonstrate viability and to spur development to help bring down costs.

The government established a C$2B fund aimed at encouraging CCS demonstration projects. Shell submitted an application for Quest and was successful in acquiring C$745M in funding from the Government of Alberta. Around the same time, the Government of Canada was looking to demonstrate action on CCS, which led to investments in both the Quest project (C$120M), as well as in Shell Canada Cansolv technology.

The Upgrader processes bitumen produced from the mining operations, upgrading it into synthetic crude feedstock suitable for refining into products such as gasoline, diesel and jet fuel. Successful integration of the new capture plant into the hydrogen manufacturing unit (HMU) allows CO₂ formed as a by-product of hydrogen production to be captured using Shell’s ADIPX amine technology. CO₂ is captured directly from a high pressure syngas stream in the hydrogen manufacturing process with a solvent. Subsequently the solvent is regenerated releasing the CO₂, which is subsequently compressed, dehydrated, transported and injected into a saline reservoir for permanent storage, making Quest a fully integrated CCS project.

Shell has taken a forward-thinking approach to greenhouse gas (GHG) management throughout oil sands project development. Shell was keen to develop the oil sands resource in Alberta, but at the same time conscious of growing concern about climate change. In response, Shell Canada took a dual approach, which included a technical plan to address CO₂ emissions from the AOSP over time, and a strategy to engage stakeholders on core concerns relative to climate change.

Shell’s approach considered a portfolio of CO₂ abatement options. The company also identified early on the importance of progressive regulation, market mechanisms and access to international markets. At that time CCS was just a concept and although there were few projects, Shell was considering feasibility of the technology.

In 2000, Shell Canada established a Climate Change Advisory Panel which brought together a number of local, national and international groups external to Shell. The panel particularly liked that a CCS project would be a tangible CO₂ reduction in Canada.

In 2008, the Alberta government announced its climate change strategy and identified CCS as a key technology needed in order to meet the Province’s target reductions for 2030 and 2050. The government struck a special task force on CCS, which included a representative from Shell on one of the working groups. The task force articulated that CCS demonstration projects were needed ahead of regulation to demonstrate viability and to spur development to help bring down costs. Around this time, the Alberta government established a C$2B fund aimed at encouraging CCS demonstration projects. Shell submitted an application for Quest and was successful in acquiring C$745M in funding from the Government of Alberta. Around the same time, the Government of Canada was looking to demonstrate action on CCS, which led to investments in both the Quest project (C$120M), as well as in Shell Canada Cansolv technology.

Shell progressed engineering studies and early feasibility work for a potential project during the early 2000s. Then towards the middle of that decade, CCS took on new importance for Shell when the company began focusing on developing a portfolio of CCS projects globally. Having done substantial foundational work, the Quest project was already positioned to lead amongst Shell’s various opportunities.
The Quest for less CO₂: Learning from CCS Implementation in Canada

A Case Study on Shell’s Quest CCS Project

Subsurface team clarified the science and specifics associated with sequestration leases. The Quest to support, Shell had to understand the processes to amend existing legal and regulatory frameworks. Shell applied for sequestration leases worldwide commercial-scale deployment of CCS is still in early days, government and public support for project development are essential to incent early demonstration projects, which are needed to achieve lower costs and greater efficiencies through economy of scale. In addition to the C$865 million of government funding (Provincial & Federal), significant government support was also required in Canada to enable the development of groundbreaking policy frameworks, including regulations tailored to CO₂ storage as well as a measurement, monitoring and verification (MMV) system and post-closure certification protocol to enable the storage responsibility to be transferred over to the government after the project lifetime. Acts were in place for extraction, deep-well disposal of fluids, and the storage of gas, however not for the subsurface sequestration of CO₂. The government had to amend existing legal and regulatory frameworks. To support, Shell had to understand the processes the regulator had to follow to establish new legislation, and the government learned about the intricacies associated with sequestration leases. The Quest subsurface team clarified the science and specifics of CO₂ storage and the goals of the project in great detail. Workshops were held to discuss ideas surrounding the legislation under development. In addition, Quest underwent an environmental assessment to meet provincial government requirements. From late 2009, the legislative and regulatory strategy was pulled together and the project moved forward. In December 2010 the government introduced the act and the regulations were in place by April of 2011. Once the regulations were introduced, Shell applied for sequestration leases. The Shell Scotford facility where Quest is situated, consists of an upgrader (operated on behalf of the AOSP) as well as a Shell wholly-owned oil refinery and chemicals facility. It is one of North America’s most efficient, modern and integrated hydrocarbon processing sites, converting oil sands derived bitumen into finished products via upgrading, refining, and chemical products. The complex is located near Fort Saskatchewan, Alberta in an area known as the ‘Industrial Heartland’. Several oil and gas, petrochemical and fertilizer operations form the primary industry base in the region. The Shell Scotford facility, originally established with the refinery in 1984, has a long history in the area and Shell has built a strong reputation as a good employer and valued member of the community. The stakeholder engagement plan for Quest needed to consider, and in many cases build upon this history, meanwhile recognizing the need to be integrated with Shell’s outreach activities already underway in the area. Channels of communication were established early on and remain open even today, enabling both formal and informal engagement to seek information and have questions answered on concerns discussed. Prior to submitting a regulatory application, open houses were held to answer questions and inform the public on the project. The open houses also drew in suggestions and feedback from local residents, one of which was a groundwater quality-monitoring program, which is now part of the MMV program. Another key success factor in the stakeholder engagement process was Shell’s collaboration with the Pembina Institute, a Canadian non-governmental organization. Often sought for their views on energy matters, Pembina is a credible and trusted voice among both members of the public and other key stakeholders. Pembina was instrumental in facilitating discussions between Shell and key local stakeholders including landowners and municipal leaders, notably through ‘Quest Cafés’ events. These events were a form of intimate dialogue sessions in which frank discussions about the concerns, questions, challenges and benefits of Quest were discussed in more detail. The sessions ensured stakeholders could express and receive credible responses and solutions (as an example, the pipeline route was modified over 30 times to incorporate local feedback and minimize disturbances). Discussions also ensured people had a full and accurate understanding of the project, and that Shell had a deep understanding of stakeholder perspectives and took these into account as the project was developed.

One of the most successful stakeholder engagement mechanisms to come out of the Quest Cafés, which is still in place today, is a Community Advisory Panel which is made up of local residents, members of the academic community, political and regulatory representatives. The primary purpose of the Panel is to share regular updates about the project, specifically the MMV program and results, and for Shell to take recommendations from the Panel on the best approach to communicate these results to the broader community.

Earning local stakeholder support and regulatory approval are critical steps, which for many projects can become hurdles that significantly delay, or even prevent, approvals. As the concept of capturing and storing CO₂ underground was seen as still new in Alberta, the project team recognized the importance of gaining local support, and also broader public acceptance in order to proceed. Describing Quest as one of several approaches to managing the CO₂ from the oil sands helped provide an effective context for discussions with government and the public. Honesty and open face-to-face discussions led by local staff were fundamental to the success of the project.
CAPTURE TECHNOLOGY
Integration into Hydrogen Manufacturing Units

Shell’s Quest project at Scotford is one of the first industrial-scale fossil fuel
CCS projects in the world. The project involves capturing CO2 from the
production of hydrogen, which is then transported and stored underground.

Quest combines tried and tested technology in an integrated surface and subsurface
development. The CO2 formed as a by-product in hydrogen production is captured using
Shell’s ADIP-X amine technology. ADIP-X is a widely applied CO2 removal process and
has been applied for decades within gas processing and liquefied natural gas plants. The successful
integration of the capture plant into the hydrogen manufacturing unit’s (HMU) operation is a critical
technical component to Quest’s success. That said, only the application for CO2 capture is truly novel.

Quest captures CO2 from the three HMUs at Scotford. Of the CO2 produced in the reformer,
roughly 80% is removed from the raw hydrogen stream. The remaining 20% is in the
flue gas from the furnace, which is captured using an amine process. ADIP-X (Adipic Acid
Diamine Process) is a widely used CO2 removal technology. The CO2 is captured by reacting it with
a water-wash column, which reduces the amine levels in the gas to very low levels to protect the
downstream adsorbents. The hydrogen is further purified in the existing pressure swing adsorption
units (PSA) removing CO, CO2, and CH4. The PSA tail gas stream contains less CO2, which reduces
the reformer temperature. At lower temperatures, there is less NOx formation. The ADIP-X
absorber is fully integrated into the HMU process (Figure 2), which implies additional measures are taken to minimize the
impacts on the hydrogen production. The raw hydrogen coming from absorber is sent to a
water-wash column, which reduces the amine levels in the gas to very low levels to protect the
downstream adsorbents. The hydrogen is further purified in the existing pressure swing adsorption
units (PSA) removing CO, CO2, and CH4 and returning those to the reformer. To compensate
for the increase in this PSA tail gas stream heating value (which contains less CO2), flue gas
from the HMU stack is recycled to the furnace via the combustion air. This is one of the crucial
measures for NOx control. The recycled flue gas substitutes the CO2 as an inert gas, which reduces the reformer temperature. At lower temperatures there is less NOx formation.

In collaboration with the technology licensors for the PSA units, several modifications have been
made to optimize and tune the PSA for Quest operation. A change to the operation mode is
that the lower CO2 load to the PSA allows the loading cycle times to be increased significantly.
Several process control measures have also been developed to successfully dampen loss of CO2 capture and prevent escalation of trips on the ADIP-X absorber.

The successful integration of the capture plant into the hydrogen manufacturing unit’s (HMU) operation is a critical technical component to Quest’s success.

Figure 2: Basic overview of Quest’s line-up

Legend: HMU = Hydrogen Manufacturing Unit
PSA = Pressure Swing Adsorption
FGR = Flue Gas Recycle

07
Storing the CO₂ subsurface

The BCS is a deep saline aquifer, located about 2 km below ground, far below groundwater levels and oil and gas reservoirs. The storage formation is at the base of the central portion of the Western Canada sedimentary basin. Here CO₂ will be injected over a period of 25 years and will remain permanently trapped in the formation.

In the site selection for CO₂ sequestration, it was key to find a subsurface formation that could store CO₂ and would contain the CO₂ such that it could not leak to any shallow reservoirs, neither hydrocarbon bearing nor aquifers. Above the BCS, a number of thick seals (cap layer) are present including the Middle Cambrian Shale, and the Upper and Lower Lutang Salts (Figure 3). In addition to having sufficient cap layers, the site had to be in an area with minimal penetrations of the storage complex by legacy wells.

In addition, the formation has high injectivity. Consequently, lower injection pressures are required which lowers the driving force for leaks, but also decreases the operational cost of the facilities as less compression horse power is required. Modeling shows that even in the event of a leak path it is highly unlikely that groundwater would be contaminated given the multiple layers of thick, low-permeability, and extensive sealing formations that separate the BCS from groundwater sources.

The monitoring results will be transparent and publically available to demonstrate that the Quest storage site is inherently safe.

The MMV program aligns with the ability to demonstrate safe, long-term integrity of the storage, supports public acceptance, and can be used to define balanced MMV requirements for future CCS projects. The current program covers a wide range of technologies and analysis throughout the atmosphere, biosphere, hydrosphere and geosphere.

This MMV system is designed according to a systematic risk assessment, known as the bow-tie method. This focuses on the elements of the MMV to address specific issues and is a well-established barrier (safeguard) approach Shell uses for process safety throughout its global operations to achieve two distinct objectives:

ENSURE CONTAINMENT – to demonstrate the security of CO₂ storage and to protect human health, groundwater resources, hydrocarbon resources, and the environment;

ENSURE CONFORMANCE – to indicate the long-term effectiveness of CO₂ storage by demonstrating actual storage performance is consistent with expectations about injectivity, capacity, and CO₂ behaviour inside the storage complex;

MMV will achieve this in two ways. First, the expected effectiveness of existing safeguards created by site selection, site characterization, and engineering designs were verified. Second, the system creates additional safeguards using the same monitoring systems to provide an early warning to trigger timely control measures designed to reduce the likelihood or the consequence of any leakage from the storage site. Transfer of long-term liability to the government is supported by MMV activities designed to verify that the observed storage performance conforms to model-based forecasts and that these forecasts are consistent with permanent secure storage at an acceptable risk.

The Quest MMV program has been set up to test multiple approaches to define optimal MMV requirements for future projects with a reduced set of technologies. As such, the program is by no means a precedent for follow on projects. In early 2015, the US Department of Energy and Shell announced plans to collaborate on field tests to validate advanced monitoring, verification, and accounting (MVA) technologies for underground storage of carbon dioxide.
COST EFFECTIVENESS THROUGH SMART CONSTRUCTION

Although Shell does not provide project specific costs, when the funding letters of intent were signed in October 2009 the govt provided an estimate of $1.35 billion CAD. This government’s figure reflects costs over a 15-year period (which includes the development and construction phases and 10 years of operations.) The Quest Project team successfully managed to deliver the project cost effectively despite a heated labor market at the time of fabrication and construction. The stage was set through the project planning process, in which clear expectations, early alignment, construction-led planning and design and careful management of scope and changes were key. Quest took modularization to the next level, basing the onshore facility on offshore standards covered by Fluor’s Third Generation ModularSM design practices. This delivered an integrated tight design on a comparably small plot, by stepping away from the traditional “stick build”, backbone with a central pipe rack and units to the side. The modular construction considerably limited the amount of onsite construction hours. The maximum module size was 7.3m (wide) x 7.6m (high) x 36m (long). Modules were assembled in the Alberta area and transported by road to the Shell Scotford site over the Alberta Heavy Haul corridor. The modules include the complete processing facility. All mechanical, piping, electrical and control system equipment were already in place.

Through construction of Quest, it became clear that cost can be further reduced with scale, if more CO2 sources can be tied into the Quest facility, the cost per tonne of CO2 sequestered could be further reduced. The 12 inch pipeline for Quest has been sized for 3.0 mtpa for CO2 – with up to 1.2 mtpa of CO2 currently available. A follow on project which met the regulatory requirements could potentially tap into the pipeline which would substantially reduce sequestration costs.

In the earlier phases of the project it would have been beneficial to have a firmer understanding of the storage formation; however this data requires significant upfront expenses. The consequence was that the subsurface and capture aspects of the project were not fully aligned until the lead-up to the final investment decision. The capture plant is therefore designed for a variety of subsurface options; notably the compressor and pipeline. Investing earlier in more appraisable would have reduced the capture plant costs.

The Quest project also bore cost to develop technology, legislative and regulatory frameworks which can now be used as templates for replication to reduce front-end project costs for follow on projects. With the experience of operating the Quest carbon-capture facilities, areas are being identified in which contingencies in the design could be reduced. The MMV system is state-of-the-art and also a testing ground for various technologies. With prolonged injection experience at Quest, the program will be able to narrow down which technologies would be best suited for future CCS applications.

CONCLUSION

In addition to the novel application of CCS in an oil sands facility, Quest has yielded numerous lessons learned and best practices relevant to both technical and non-technical risks, which can help reduce the time, effort and cost required to advance other CCS projects worldwide. With prolonged operation and injection experience at Quest more information will be made available. Globally Quest can serve as a model for advancing and deploying CCS in oil sands and other industrial operations.

Resources