CONTENTS

Iable	es		2	
Figu	res		3	
Ackr	nowledgem	nents	3	
1	CAP	TURE	4	
_				
	Se	ction highlights	5	
	1.1 Int	roduction	5	
	1.2 Co	st components of currently available capture technologies	7	
		erview of capture development efforts to drive down costs		
		rrent pilot-scale testing of 2 nd generation technologies		
2	TRAI	NSPORT	24	
			0.5	
		ction highlights		
		roduction		
		ernational standards for CO ₂ pipelines		
	2.3 CC	₂ transport R&D activities	31	
3	STOR	RAGE	36	
		Section highlights		
		roduction		
		bsurface characterisation for storage resource assessment		
		orage resource classification schemes and methods		
		rrent status of regional assessments		
	3.5 Ma	atched capacity and source-sink considerations	50	
Refe	rences		54	
		ng of applicable International Standards and Codes to CO2 transport		
		and acronyms		
	TAB	LES		
	Table 1.	1 Energy penalties introduced by CO ₂ capture systems in power plan	nts8	
	Table 1.	2 2 nd generation capture technologies being tested at 0.5 MW _e (10 scale or larger		
	Table 3.			
	Table 3.			
	Table 3.	<u>-</u>		
	Table 3.			
	Table 3.	5 Asian Development Bank estimated theoretical storage resource	s48	
	Table 3.	6 Progress on storage assessments in selected countries in the		
		Asia Pacific region	48	
	Table 3.	7 Selected key estimates of effective storage resources	51	

FIGURES

Figure 1.1	Relative increases in capital cost and LCOE introduced by a capture	
	system – US experience	. 8
Figure 1.2	Relative US DOE cost reduction targets and timing for 2 nd generation	1
	and transformational carbon capture technologies	10
Figure 1.3	Generalised approach for meeting capture cost technologies	11
Figure 1.4	Pathway of carbon capture technology development	16
Figure 1.5	Generalised development timelines for 2 nd generation and	
	transformational capture technologies	18
Figure 2.1	Onshore CO ₂ transportation – pipeline construction	26
Figure 3.1	(a) CSLF Techno-Economic Resource-Reserve pyramid, (b) storage	
	classification schemes of IEA GHG, (c) schemes of Frailey and Finley	42
Figure 3.2	Geographical coverage of storage resource assessments	52

ACKNOWLEDGEMENTS

Capture

Principal contributors to the Capture section of this volume of the *Global Status* of CCS: 2015 report were **Ron Munson** (Principal Manager Capture, Global CCS Institute), **Guido Magneschi** (Senior Adviser Carbon Capture, Global CCS Institute) and **Dr Tony Zhang** (Senior Adviser Carbon Capture, Global CCS Institute).

Parties from outside of the Global CCS Institute that reviewed and provided comment on the Capture section of this volume of the *Global Status of CCS: 2015* report were **John Marano** – JM Energy Consulting Inc., **Earl Goetheer** – TNO and **Paul Feron** – CSIRO.

Transport

The Transport section of this volume of the *Global Status of CCS: 2015* report was prepared by Energy Pipelines CRC with the principal authors being **Dr Klaas van Alphen** and **Professor Valerie Linton.**

Storage

Principal contributors to the Storage section of this volume of the *Global Status* of CCS: 2015 report were **Neil Wildgust** (Principal Manager Storage, Global CCS Institute), **Dr Chris Consoli** (Senior Adviser Storage, Global CCS Institute) and **Benjamin Court** (Senior Adviser Storage, Global CCS Institute).

Parties from outside of the Global CCS Institute that reviewed and provided comment on the Storage section of this volume of the *Global Status of CCS: 2015* report were **Owain Tucker, Chris Rathbun** and **Xudong Jing** – Shell, **Stefan Bachu** – Alberta Innovates Technology Futures, **Wes Peck** – Energy and Environment Research Centre and **Isabelle Czernichowski** and **Ton Wildenborg** – CO₂GeoNet.