Toshiba’s Activity in Ministry of the Environment Sustainable CCS Project
Contents

01 Background

02 Application of CO₂ Capture to Thermal Power Plants

03 Ministry of the Environment Sustainable CCS Project (CO₂ Capture)
01

Background
Business Domain of Toshiba Energy Systems & Solutions

Power Generation Systems
- Thermal Power
- Nuclear Power

Transmission and Distribution / Energy Storage
- Transformer
- Supervisory Control And Data Acquisition Systems (SCADA)
- Hydrogen-based Autonomous Energy Supply System
- Stationary Battery Energy Storage Systems

Renewable Energy
- Hydro Power
- Geothermal Power
- Solar Power
What is CCS?

CCS: Carbon (Dioxide) Capture and Storage

- CO₂ Emission Source
 - Thermal power
 - Industry (Steel, Cement, etc.)
- CO₂ Capture
- CO₂ Compression
- CO₂ Transportation
- CO₂ Storage
- Monitoring
As a method to mitigate global warming, the necessity of CCS is recognized as a countermeasure against emission of CO$_2$.

Source: The Global Status of CCS 2017 – P.20
02

Application of CO₂ Capture to Thermal Power Plants
CO₂ Capture Technology from Thermal Power Plants

Post Combustion Capture (PCC)

- **PROS:**
 - Process proven in chemical industry
 - Adaptable to new build, existing retros
 - Adaptable to other emitters (steel, cement)
 - Partial capture configuration possible

- **CONS:**
 - Energy penalty for capture
 - Equipments tend to be larger than other techs

Oxy-Fuel (Firing)

- **PROS:**
 - Capture process after boiler simplified
 - Little penalty associated with capture itself

- **CONS:**
 - Energy penalty and cost required for ASU
 - Plant operational flexibility
 - Additional equip required for CO₂ purity
 - No partial capture configuration possible

Pre Combustion Capture

- **PROS:**
 - Capture equipments smaller (high pressure)
 - Capture energy penalty smaller

- **CONS:**
 - Energy penalty and cost required for ASU
 - IGCC lacks operational flexibility of CC
 - Only new build application
 - No partial capture configuration possible

ASU: Air Separation Unit FGD: Fuel Gas Desulphurization EP: Electrostatic Precipitator
To capture CO₂ in the flue gas continuously, amine solvent is used which absorbs CO₂ at low temperature and discharges at high temperature.
Reducing CO₂ Emission from Thermal Power Plants

Substantial CO₂ reduction is realized by Integration and Optimization of both High efficiency Turbine Cycles and CCS technology.
Integrating CO₂ Capture to Thermal Power Plants

1. Integration to Flue Gas System

2. Integration to Power System & Cycle

3. Integration with Plant Utility Systems

4. Integration with Power Plant Operation and Maintenance

Utility Facilities
- Auxiliary power
- Water Supply System
- Control and Service Air
- Cooling Water
- Cooling Tower
- Waste Water Treatment
CO₂ Capture to Technology Implementation Flow

【Toshiba’s Activity】

1. Process Design / Evaluation of System Performance Improvement by Simulation
2. Overall Demonstration at Mikawa PCC Pilot Plant
3. Design of Solvent / Evaluation of Basic Properties and Absorption Performance
4. Performance / Degradation Evaluation by Small Loop
5. Large Scale Demonstration / Commercial Plant

© 2019 Toshiba Energy Systems & Solutions Corporation
【Toshiba’s Activity】
Mikawa Thermal Power Plant

CO₂ Capture Demonstration Plant
Constructed under the Ministry of the Environment Project

Sigma Power Ariake Co., Ltd.
Mikawa Power Plant
Omuta City, Fukuoka, Japan

PCC Pilot Plant
Toshiba owned

Turbine No.1
50MW Commercial

Turbine No.2
Full Size Steam Turbine Test Facility

IoT Server
Data Collection & Remote monitoring

PC Boiler
(Not Used)

Stack

CFB Boiler
(Biomass/Coal)

© 2019 Toshiba Energy Systems & Solutions Corporation
Mikawa PCC Pilot Plant - Overview and Summary

Plant Outline
Location: Omuta City, Fukuoka
Inside Mikawa Thermal Power Plant
(Property of SIGMA POWER Ariake Co.Ltd.)
Plant Commenced: September 29, 2009

Carbon Capture Technology: Post Combustion Capture (PCC)
Amine-based Chemical Absorption (Toshiba’s Solvent System)
Capture Capacity: 10 ton-CO₂ / day
Flue Gas Flow: 2100 Nm³ / hour (from Mikawa Biomass/Coal Fired Power Plant)
* Test flue gas CO₂ concentration adjustable from 4%(NGCC) to 30%(Steel works)
 utilizing absorber and stripper exit gas recirculation and air bypass intake line.

Summary of Results (as of May, 2019)
- Cumulative 11794 hours of operation on a live flue gas of biomass / coal fired thermal power plant
- CO₂ Recovery Energy: less than 2.4 GJ/ t-CO₂
 (@90% CO₂ Capture, CO₂ Conc. approx. 12%)
- Verified system stability over 2800 hours of continuous operation.

Reference Website
03

Ministry of the Environment Sustainable CCS Project (CO₂ Capture)
Outline of the Project

1. CO₂ Capture from the Mikawa Power Plant
 - CO₂ capture facility to be designed and constructed to capture more than 500 tons of CO₂ per day. (500 tons of CO₂ per day is about 50% of the daily emissions from the 50 MW Mikawa Power Plant)
 - The plant will be used to evaluate performance of technology under various operating conditions, cost and environmental aspects of the amine-based post-combustion chemical absorption technology.

2. Establishing a Socio-political Environment for the Introduction of CCS in Japan
 - Research on aspects including socio-economics and policies to establish an enabling environment necessary for the smooth introduction of CCS in Japan.
 - Develop basic concepts toward an integrated CCS system, with aims to achieve practical applications of the capture technology by 2020.

Project Consortium (as of Mar 2019)

- Ministry of the Environment
- Toshiba
- Mizuho (Administrator)
- Mitsubishi Materials
- JGC Corporation
- Chiyoda Corporation
- Central Research Institute of Electric Power Industry
- JCOAL
- JG Corporation
- AIST
- JNC
- JCOAL
- The University of Tokyo
- Taiheiyo Cement
- JCOAL
- DIA Consultants
- Kyushu University
As part of the MoE’s Sustainable CCS Project, Toshiba has designed and now constructing the CO₂ Capture Demonstration Plant, which will capture more than 500 tons-CO₂/day from Mikawa Power Plant (more than 50% of its total emissions). The Capture Plant will be built and fully integrated with the Power Plant, with turbine extraction steam feeding the energy for regeneration of CO₂ at the stripper tower. The Mikawa Power Plant now has a new boiler capable of burning 100% biomass. Consequently, the project has the potential to be one of the first BECCS project in the world.
Schedule of 5-year Project

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic specification</td>
<td>Basic design</td>
<td>Detailed design</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of equipment specification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arrangement of materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application of permission</th>
<th>FY2016</th>
<th>FY2017</th>
<th>FY2018</th>
<th>FY2019</th>
<th>FY2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application form preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulatory compliance, application for approval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construction work</th>
<th>FY2016</th>
<th>FY2017</th>
<th>FY2018</th>
<th>FY2019</th>
<th>FY2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Construction work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demo Plant Construction & Integration to Power Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Commissioning & Demonstration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Status of Construction Site

Present Status
The following are presently considered as items to be demonstrated/verified at the CO₂ Capture Demo Plant*:

◆ Performance Issues
 • CO₂ Capture mass flow
 • CO₂ Capture rate
 • Energy required to capture CO₂
 • Overall effect on performance of the power plant equipped with CO₂ capture facility

◆ Operability Issues
 • Effects of flue gas property (fuel)
 • Effects of CO₂ capture rate setting
 • Effects of heat inputs to CO₂ capture
 • Start-up, shut-down, transient operations
 • Part load, part capture operability

◆ Environmental Issues
 • Emissions for CO₂ capture facility
 • Control methods of emissions
 • Degradation and its effects

Note: Depth and extent of evaluation is subject to limitation of available time, schedule, and budget
Thank you for your attention!

Next:
Ministry of the Environment Sustainable CCS Project (Transport)