GLOBAL STATUS OF CCS 2021
CCS ACCELERATING TO NET ZERO
ABOUT US
The Global CCS Institute (the Institute) is an international think tank whose mission is to accelerate the deployment of carbon capture and storage (CCS), a vital technology to tackle climate change.

As a team of over 30 professionals, working with and on behalf of our Members, we drive the adoption of CCS as quickly and cost effectively as possible; sharing expertise, building capacity and providing advice and support so CCS can play its part in reducing greenhouse gas emissions.

Our diverse international membership includes governments, global corporations, private companies, research bodies and non-governmental organisations; all committed to CCS as an integral part of a net zero emissions future.

The Institute has offices in Abu Dhabi, Beijing, Brussels, Houston, London, Melbourne, Tokyo and Washington DC.

ABOUT THE REPORT
CCS is an emissions reduction technology critical to meeting global climate targets. The Global Status of CCS 2021 documents important milestones for CCS over the past 12 months, its status across the world and the key opportunities and challenges it faces.

We hope this report will be read and used by governments, policy-makers, academics, media commentators and the millions of people who care about our climate.

AUTHORS
This report was led by Guloren Turan and Alex Zapantis. The team of authors included David Kearns, Eve Tamme, Christina Staib, Tony Zhang, Jamie Burrows, Angus Gillespie, Ian Havercroft, Dominic Rassool, Chris Consoli and Harry Liu. Support from Matt Bright, Jeff Erikson, Patricia Loria, Hiroshi Nambo, Yi Wu, Carla Judge, Ruth Gebremedhin and Matt Steyn made it possible.

ACRONYMS
ACCU: Australian Carbon Credit Unit
ADNOC: Abu Dhabi National Oil Company
BECCS: Bioenergy with CCS
CCS: Carbon Capture and Storage
CCUS: Carbon Capture Utilisation and Storage
CDR: Carbon Dioxide Removal
CO2: Carbon Dioxide
COP: Conference of the Parties
DAC: Direct Air Capture
DACCS: Direct Air Capture with Carbon Storage
DOE: US Department of Energy
EC: European Commission
EOR: Enhanced Oil Recovery
EPA: Environmental Protection Agency
EPC: Engineer, Procure, Construct
EPS: Emission Performance Standards
ESG: Environmental, Social and Corporate Governance
ETS: Emissions Trading System
EU: European Union
FEED: Front-End Engineering Design
GFC: The Green Climate Fund
GHG: Greenhouse Gas
Gt: Gigatonne
GW: Gigawatt
IEA: International Energy Agency
IEA-SDS: IEA’s Sustainable Development Scenario
IMO: International Maritime Organisation
IPCC: Intergovernmental Panel on Climate Change
IRS: Treasury and Internal Revenue Service
JCM: Joint Crediting Mechanism
JOGMEC: Japan Oil, Gas and Metals National Corporation
LCFS: Low Carbon Fuel Standard
LEDS: Long Term Low Greenhouse Gas Development Strategies
LNG: Liquefied Natural Gas
MEE: Ministry of Ecology and Environment
MMV: Monitoring, Measurement and Verification
Mt: Million Metric Tonnes
Mtpa: Million tonnes per annum
MW: Megawatt
MDC: Nationally Determined Contribution
NET: Negative Emissions Technology
NETL: National Energy Technology Laboratory
NZE: Net zero emissions
PV: Photovoltaic
R&D: Research and Development
RD&D: Research, Design and Development
SDS: Sustainable Development Scenario
SLL: Sustainability Linked Loan
SMR: Steam Methane Reforming
SOE: State Owned Enterprise
TWH: Terrawatt Hour
UNFCCC: United Nations Framework Convention on Climate Change
UAE: United Arab Emirates
UN SDGs: UN’s Sustainable Development Goals
VCM: Voluntary Carbon Market
WIE: Waste to Energy
1.0 INTRODUCTION

2.0 GLOBAL STATUS OF CCS
 2.1 CCS, NET ZERO AND ECONOMIC PROSPERITY 10
 2.2 GLOBAL CCS FACILITIES UPDATE AND TRENDS 12
 2.3 INTERNATIONAL POLICY UPDATE 22

3.0 REGIONAL OVERVIEWS
 3.1 NORTH AMERICA 26
 3.2 ASIA PACIFIC 32
 3.3 EUROPE AND NEARBY REGIONS 38
 3.4 GULF COOPERATION COUNCIL STATES 44

4.0 PATHWAYS IN FOCUS
 4.1 ENVIRONMENTAL, SOCIAL AND GOVERNANCE 50
 4.2 FINANCING CCS 50
 4.3 CCS NETWORKS 53
 4.4 INDUSTRY 54
 4.5 HYDROGEN 55
 4.6 TECHNOLOGY-BASED CO₂ REMOVAL 58
 4.7 MINERAL CARBONATION 59

5.0 APPENDICES
 5.1 COMMERCIAL CCS FACILITIES AND PROJECTS 62
 5.2 CCS NETWORKS 68
 5.3 CO₂ GEOLOGICAL STORAGE 70

6.0 REFERENCES 76
As impressive as the past year’s progress with accelerating the CCS project pipeline is, the stark reality is that enormously more CCS facilities are required – at least a 100-fold increase over the 27 in operation today – by 2050. Without this, the world is extremely unlikely to achieve the key targets in the Paris Agreement with the well-documented serious consequences of such an outcome.

Increasingly the focus for the application of CCS is in the industrial or ‘difficult to decarbonise’ sectors. For the most part CCS is the ‘go-to’ solution where electrification is not a viable solution, often when high heat or chemical reactions dependent on the presence of carbon are required. In other instances, CCS has very low cost and demonstrated mature technology strongly in its favour. And because these heavy industries often congregate together, CO2 networks have quickly become a significant element in CCS deployment. While we reported similarly in 2020, this year has seen significant strides taken in progressing many of these CCS network projects and new ones, like the Houston Ship Channel project, being announced.

The world continues to employ fossil fuel-based electricity generation plants at enormous scale. While in some countries these are declining, in other parts of the world coal and gas-fired power plants remain central, and in some cases growing, part of electricity systems. While power generation did not feature significantly in our reports for some years, this changed in 2020 and further new projects have been announced that are included in this report. This is good news as there will be a large and increasingly urgent need to address power sector emissions in, for example, much of Asia where early retirement of relatively young coal and gas plants is unlikely. Technology deployment in developed nations will make for lower cost application elsewhere.

We know based on reputable analysis, including from the IPCC, that carbon dioxide removal will be required to meet the Paris targets. We also know that nature-based solutions alone will not be enough. Bioenergy with CCS – BECCS – has long been understood to be an important element of this. It is also increasingly apparent that direct air capture will need to play a significant role. Pleasingly, the development and deployment of direct air capture of CO2 is gaining momentum, albeit off a small base. Significant capital investment in nascent direct air capture developers is being seen and substantial new projects are being progressed. The decreasing cost curve for direct air capture is notable and important.

As I sign off from my final edition of the Global Status of CCS Report, I am hugely encouraged that CCS is now on a strong growth trajectory after enduring some very difficult years. Over the past decade I have seen CCS move from being falsely identified only as a coal-fired power generation technology to being increasingly embraced as a vital element of meeting the climate challenge due to its versatility in application, demonstrated effectiveness and ability to deal with enormous volumes of emissions. Recently, its role in removing CO2 from the atmosphere has added yet another string to its bow.

Time is not on anyone’s side. We must press on with vigour in rapidly accelerating still further the deployment of CCS.
“THE CLIMATE ACTION EFFORTS WE’RE SEEING GLOBALLY, WHILE ENCOURAGING, ARE NOT ENOUGH. THE SOONER WE INCLUDE CARBON CAPTURE USE AND STORAGE TECHNOLOGIES INTO THE FOLD OF WIDE-SPREAD DECARBONISATION INITIATIVES, THE MORE LIKELY WE WILL BE ABLE TO ACHIEVE PARIS AGREEMENT CLIMATE TARGETS AND GET TO NET ZERO EMISSIONS.”

HRH, The Prince of Wales
The Norwegian government recognises that ambitious, comprehensive and bold steps are required to reach climate neutrality by 2050, and carbon capture and storage technology will be a key part in that effort. CCS is a critical climate change mitigation tool that provides significant emissions reductions for energy intensive sectors. For over 20 years, Norway has been successfully deploying CCS in the country’s climate mitigation plans and actions. With a continued commitment to reduce emissions, Norway’s CCS Longship project will support the European region in its decarbonisation efforts by providing extensive CO₂ storage capacity. Working alongside a wide range of climate mitigating approaches, CCS technology will play a central role in the low-carbon transition, both in Norway and beyond. The Global Status of CCS Report highlights the positive steps being taken to tackle climate change around the world, while shedding light on the urgent need to accelerate the deployment of CCS to reach 2050 climate targets.

“CCS IS A CRITICAL CLIMATE CHANGE MITIGATION TOOL THAT PROVIDES SIGNIFICANT EMISSIONS REDUCTIONS FOR ENERGY INTENSIVE SECTORS.”

“FOR OVER 20 YEARS, NORWAY HAS BEEN SUCCESSFULLY DEPLOYING CCS IN THE COUNTRY’S CLIMATE MITIGATION PLANS AND ACTIONS.”
2.0 GLOBAL STATUS OF CCS

2.1 CCS, NET ZERO AND ECONOMIC PROSPERITY

The CCS project pipeline mirrors climate ambition, growing steadily since the 2015 Paris Agreement. Civil society’s calls for government and the private sector to align their policies and practices with climate stabilisation have grown in number and volume, especially since the Intergovernmental Panel on Climate Change’s (IPCC) special report. This 2018 publication reviewed scientific literature to develop an authoritative projection of the impacts from global warming. Four pathways show how global anthropogenic emissions must change through this century to achieve a 1.5°C climate outcome. All require a rapid decrease in emissions to net zero by 2060 (2). The IPCC also estimated that 5-10 gigatonnes (Gt) of carbon dioxide (CO₂) must be removed from the atmosphere each year in the second half of this century to:

- offset residual emissions that are very difficult to abate – hard to avoid emissions such as those from agriculture and air travel
- reduce the total load of greenhouse gases in the atmosphere to below the carbon budget for 1.5°C of global warming – correcting for the overshoot.

Government and private sector responses to pressure for climate change action have resulted in a wealth of commitments to net zero emissions. The International Energy Agency (IEA) reports that, by late April 2021, 44 countries and the European Union had announced net zero emissions targets. Ten legislated, eight propose to make them a legal obligation and the rest pledged net zero targets in government policy documents. These commitments cover approximately 70 per cent of global CO₂ emissions (4).

The Climate Ambition Alliance, which brings together countries, regions, cities, businesses and investors to work towards achieving net zero emissions by 2050, has almost 4,000 participants, including over 2,300 companies and 700 cities (5). The leaders of these organisations have pledged to reach net zero emissions by mid-century.

The leaders of these organisations have pledged to reach net zero emissions by mid-century.

CCS IN NATIONAL LONG-TERM STRATEGY

Setting a net zero target is an essential first step. Achieving net zero emissions will require many specific actions, in all sectors, over decades. It is no coincidence that recent growth in net zero commitments has been accompanied by an unprecedented spike in CCS activity. When organisations consider adopting net zero, they commonly do an analysis where they catalogue emissions, identify mitigation options for each, then rank them for cost and efficacy. CCS often emerges as an essential part of the lowest cost pathway to net zero.

There is an increasing recognition by governments of CCS’s critical role. It now appears in 24 of 29 Long Term Low Emissions and Development Strategies (LTEDS) submitted under Article 4 of the Paris Agreement, as national governments decide how they will deliver their abatement commitments. Pacala & Socolow (2004) found that CCS should be used in conjunction with other mitigation options. This finding has been reiterated many times by the IEA and others. Taking CCS, or any other option, off the table increases the cost of cutting emissions. CCS is one of many climate mitigating technologies – commercially available and absolutely necessary to achieve a stable climate.

The economic and social value of CCS

Effective climate policy must deliver near-term economic and social value as well as net zero emissions. Representative governments will avoid policies where costs fall disproportionately on specific communities or industries. An absence of strong opposition, and sustained support, is essential if governments are to implement strong, effective climate policies that survive the political cycle. CCS can help.

In many countries, climate-focused policy or regulation is increasingly unlikely to be opposed by arguing against climate science. Debate is more often focused on how to mitigate emissions, policy costs and the economic impacts of policies on specific industries or communities. Sustainable climate policy is less likely when a community or industry that would be adversely impacted has political power – due to their size, economic contribution, or cultural value. An aggrieved and motivated group can quickly translate into electoral defeat. By protecting and creating jobs, CCS builds support for strong climate action in places that might otherwise perceive it as a threat.

Emissions intense industries often develop in clusters due to the availability of feedstocks; access to infrastructure, such as ports and rail; the presence of a skilled workforce; and a critical mass of specialist suppliers of engineering and other goods and services. Many local communities rely upon a cluster like this for a large proportion of their employment and local economy. They would suffer severe economic and social dislocation if their emissions intense industries were shut down. CCS can help transform high emissions-intensity industries to near-zero emissions industries – continuing support for economic prosperity, but also helping achieve climate imperatives.

Put simply, CCS protects jobs in industries and communities. It is one of the reasons why networks centred on existing industrial precints are emerging as a preferred model for CCS development. CCS also creates new high value jobs. CCS facilities begin as large engineering and construction projects that take years to plan, design, construct and commission. They require a significant development and construction workforce. At its peak, the Boundary Dam CCS facility in Canada employed a construction workforce of 1,700. Similarly, up to 2,000 people helped build the Alberta Carbon Trunk Line. Ongoing jobs are then created to run and maintain the CCS facilities. A commercial CO₂ capture facility may employ around 20 operators and maintainers, while supporting jobs in firms that provide its goods and services (7).

The global CCS industry must grow by more than a factor of 100 by the year 2050, to achieve Paris Agreement climate targets. This means building 70 to 100 facilities a year, up to 100,000 construction jobs and ongoing jobs for 30,000 to 40,000 operators and maintainers (7). The size of the global CCS industry could approach that of the world natural gas industry within a few decades creating a significant engine of growth, alongside renewable energy, in the new low emissions economy.
2.0 GLOBAL STATUS OF CCS

2.1 CCS, NET ZERO AND ECONOMIC PROSPERITY

Despite unprecedented growth in the CCS project pipeline for the last 12 months, there remains a massive gap between today’s CCS fleet and what is required to reduce global anthropogenic emissions to net zero. Limiting global warming to 2°C requires installed CCS capacity to increase from around 40 Mtpa today to over 5,600 Mtpa by 2050 (8). Between USD$655 billion and USD$1,280 billion in capital investment is needed to 2050 (9).

This figure may appear daunting but investing around one trillion dollars over almost 30 years is well within the capacity of the private sector – in 2018, it invested approximately US$1.85 trillion (10) in just the energy sector. In addition to enormous financial resources, the private sector has the expertise and experience to develop projects. In the face of rising expectations from stakeholders and shareholders to invest in assets that aid climate mitigation, the private sector is also actively seeking opportunities. All that’s needed is a business case.

If we assume there is a business case for investment, and that capital is not a big constraint, the largest barrier to meeting climate targets is time. Rapid growth of supporting infrastructure is required by 2030 to bring more projects into the development pipeline and get them operating by 2050. In many cases, supporting infrastructure is an investment prerequisite – not only for CCS but other essential parts of any net zero strategy. For example, investing in new renewable power generation means more electricity transmission lines, while ramping up clean hydrogen production and use requires new storage, transportation and distribution infrastructure. Faster rates of CCS facility development demand additional CO₂ transport and storage facilities. North America’s CO₂ transport pipeline network is estimated to need to grow from around 8,000 km today to 43,000 km by 2050. This scale is definitely achievable, being only slightly larger than Australia’s natural gas transmission network, which has over 39,000 km of pipelines (3).

Driving infrastructure development to support a net zero economy should be a priority of governments everywhere. There are many examples where their support or direct investment was required to de-risk and initiate industries, including road, rail, telecommunications, electricity generation and distribution, space exploration and more recently, renewable energy. As these industries matured and became commercial, government intervention was replaced by increased private sector investment. Governments could similarly support the establishment of CO₂ transport and storage networks to service industrial CCS hubs.

A CCS network requires geological storage for CO₂. Identifying and characterising a storage resource requires tens to hundreds of millions of investment dollars. All funds are at risk as there is no guarantee of success. Unlike mineral or hydrocarbon exploration, exploring for pore space does not yet generally justify risking tens of millions of dollars. Government can assist by supporting the collection of geological data and making it available. Today’s CCS facilities benefited from geological data collected during oil or gas exploration and/or from government funded programs.

Large infrastructure projects like CCS facilities or pipeline networks, usually take seven to 10 years from concept study through feasibility, to design, construction then operation. There is no time to waste. Creating an enabling environment for investment in CCS facilities and other net zero aligned assets – particularly in supporting infrastructure – through both policy and funding, should be a high priority for governments between now and 2030.

2.2 GLOBAL CCS FACILITIES UPDATE AND TRENDS

FIGURE 5 WORLD MAP OF CCS FACILITIES AT VARIOUS STAGES OF DEVELOPMENT
The large increase in commercial CCS facilities in the first half of 2021, has led to project pipeline capacity levels not seen since 2011 – 149.3 Mtpa. The project pipeline capacity annual average growth rate since 2017 has been 30 per cent.

Most growth so far in 2021 was in early development (25.9 Mtpa) and advanced development projects (9.0 Mtpa). Project numbers in construction, or operational, were stable. Given the long lead-times for CCS projects (up to ten years, depending on location) it will be a while before this growth in early and advanced development translates into operating projects. Nevertheless, the rapid increase in developments is positive news for action on climate change.

All facilities in the project pipeline, including newly listed ones are recorded in the Institute’s ‘CO2RE Database’.

Commitments to CCS flowed due to the 2015 Paris Agreement, the resulting national pledges to take climate action, and complimentary development of CCS-supportive policy in many regions of the world. More private investors now want CCS in their portfolios. There is increased interest in CCS as part of a broad suite of technologies and strategies that can help achieve net zero emissions solutions at the lowest possible risk and cost. Without CCS, net zero is practically impossible.

Figure 6 summarises commercial CCS facilities in the Global CCS Institute’s database. There are 135 (two suspended) in the project pipeline. In the first nine months of 2021, 71 projects were added – with one former project removed because development ceased. These numbers represent an astonishing doubling of the total number of CCS facilities that are operating or in development since the 2020 Global Status of CCS Report was published.

The United States (US) again leads the global league table, hosting 36 of the added facilities. US success demonstrates convincingly that where policy creates a business case for investment, projects proceed. Other leading countries are Belgium with four, the Netherlands with five and the United Kingdom (UK) – eight.

Figure 7 shows the progress of commercial CCS facilities from 2010 to September 2021. Capacity decreased year on year between 2011 and 2017, likely due to factors such as the public and private sector focus on short term recovery after the global financial crisis. Since 2017 there has been growth at the early and advanced development stages. Importantly, Figure 7 does not include ten early development or five advanced development projects in the pipeline, for which no capacity has been announced. As such, it underestimates potential.

Figure 8 lists the largest contributors to growth of projects in development, 2021.

<table>
<thead>
<tr>
<th>PLANT</th>
<th>INDUSTRY</th>
<th>COUNTRY</th>
<th>MEAN CO2 CAPTURE CAPACITY (Mtpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dave Johnson Plant</td>
<td>Electricity generation</td>
<td>United States</td>
<td>4.00</td>
</tr>
<tr>
<td>G2 Net zero LNG</td>
<td>Natural gas processing</td>
<td>United States</td>
<td>4.00</td>
</tr>
<tr>
<td>NextDecade Rio Grande LNG</td>
<td>Natural gas processing</td>
<td>United States</td>
<td>5.00</td>
</tr>
<tr>
<td>Keadby 3 Power Station</td>
<td>Electricity generation</td>
<td>United Kingdom</td>
<td>2.10</td>
</tr>
<tr>
<td>Repsol Sakakemang</td>
<td>Natural gas processing</td>
<td>Indonesia</td>
<td>1.80</td>
</tr>
<tr>
<td>Barents Blue Clean Ammonia</td>
<td>Chemical production</td>
<td>Norway</td>
<td>1.60</td>
</tr>
</tbody>
</table>

2.0 GLOBAL STATUS OF CCS

2.2 GLOBAL CCS FACILITIES UPDATE AND TRENDS

Commitments to CCS flowed due to the 2015 Paris Agreement, the resulting national pledges to take climate action, and complimentary development of CCS-supportive policy in many regions of the world. More private investors now want CCS in their portfolios. There is increased interest in CCS as part of a broad suite of technologies and strategies that can help achieve net zero emissions solutions at the lowest possible risk and cost. Without CCS, net zero is practically impossible.

Figure 6 summarises commercial CCS facilities in the Global CCS Institute’s database. There are 135 (two suspended) in the project pipeline. In the first nine months of 2021, 71 projects were added – with one former project removed because development ceased. These numbers represent an astonishing doubling of the total number of CCS facilities that are operating or in development since the 2020 Global Status of CCS Report was published.

The United States (US) again leads the global league table, hosting 36 of the added facilities. US success demonstrates convincingly that where policy creates a business case for investment, projects proceed. Other leading countries are Belgium with four, the Netherlands with five and the United Kingdom (UK) – eight.

Figure 7 shows the progress of commercial CCS facilities from 2010 to September 2021. Capacity decreased year on year between 2011 and 2017, likely due to factors such as the public and private sector focus on short term recovery after the global financial crisis. Since 2017 there has been growth at the early and advanced development stages. Importantly, Figure 7 does not include ten early development or five advanced development projects in the pipeline, for which no capacity has been announced. As such, it underestimates potential.

Figure 8 lists the largest contributors to growth of projects in development, 2021.

<table>
<thead>
<tr>
<th>PLANT</th>
<th>INDUSTRY</th>
<th>COUNTRY</th>
<th>MEAN CO2 CAPTURE CAPACITY (Mtpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dave Johnson Plant</td>
<td>Electricity generation</td>
<td>United States</td>
<td>4.00</td>
</tr>
<tr>
<td>G2 Net zero LNG</td>
<td>Natural gas processing</td>
<td>United States</td>
<td>4.00</td>
</tr>
<tr>
<td>NextDecade Rio Grande LNG</td>
<td>Natural gas processing</td>
<td>United States</td>
<td>5.00</td>
</tr>
<tr>
<td>Keadby 3 Power Station</td>
<td>Electricity generation</td>
<td>United Kingdom</td>
<td>2.10</td>
</tr>
<tr>
<td>Repsol Sakakemang</td>
<td>Natural gas processing</td>
<td>Indonesia</td>
<td>1.80</td>
</tr>
<tr>
<td>Barents Blue Clean Ammonia</td>
<td>Chemical production</td>
<td>Norway</td>
<td>1.60</td>
</tr>
</tbody>
</table>
CCS PROJECTS ARE BECOMING MORE DIVERSE

As new projects are announced and developed, the range in the scale of facilities is becoming broader. Individual capture plants are larger, with facilities like Shell's Rotterdam hydrogen project developing in the megatonne range. At the same time, networks like the US's Summit Carbon Solutions are making smaller capture viable – their smallest capture plant has a capacity of just 90,000 tonnes a year. Capacities this small would be difficult to justify without supporting network infrastructure.

The recently approved Norcem Brevik project, part of the Langskip network in Norway, has CCS expanding into a new sector – cement manufacturing. As a significant global emitter with limited decarbonisation options, the cement sector's use of CCS is an essential step towards net zero. The Norcem project is expected to provide valuable CCS learning and insights.

2.0 GLOBAL STATUS OF CCS

2.2 GLOBAL CCS FACILITIES UPDATE AND TRENDS
2.0 GLOBAL STATUS OF CCS

2.2 GLOBAL CCS FACILITIES UPDATE AND TRENDS

THE RISE OF CCS NETWORKS

Historically, CCS projects tended to be vertically integrated, with a capture plant having its own dedicated downstream transport system. This favoured large-scale projects, where economies of scale made downstream costs reasonable. Recently, there has been a trend toward projects sharing CO₂ transport and storage infrastructure: pipelines, shipping, port facilities, and storage wells. These ‘CCS networks’ mean smaller projects can also benefit from economies of scale.

The Porthos network in Rotterdam entered advanced development early in 2021. A shared pipeline will transport liquid CO₂ from four new blue hydrogen projects – Air Products, Air Liquide, ExxonMobil and Shell – under development in the Port of Rotterdam region, to storage about 20 km offshore, beneath the North Sea. The Netherlands Government committed €2.1 billion in grants to these four projects in support of this network (11).

Also in Rotterdam, TotalEnergies and Shell have partnered to develop the Aramis CCS Network; a world-scale network with a proposed capacity in excess of 20 Mtpa. This project is in Early Development. It proposes storage in the Rotliegendes Sandstones Formation beneath the North Sea at 3–4km depth. Transport modes will be mixed: a combination of liquefied CO₂ transported by barges, gas-phase CO₂ by onshore pipelines, and dense-phase CO₂ by offshore pipeline. It is expected to receive CO₂ from a range of hard-to-abate sectors such as waste to energy (WtE), steel, chemicals, oil refineries and cement.

When the Norcem Brevik cement plant in Norway (mentioned above) was funded by the Norwegian government in late 2020, the Langskip CCS network also took a step forward. Norcem Brevik will capture and liquefy 400,000 tonnes of CO₂ a year which will be transported and stored offshore beneath the North Sea. The other four projects in support of this network (11).

Summit Carbon Solutions – under development, is emerging as the world largest negative emissions network, with planned CO₂ capture capacity of 7.9 million tonnes a year. Supporting 31 separate projects, the network will capture and transport CO₂ from multiple sources in phase two (12).

Summit Carbon Solutions network, under development, is emerging as the world largest negative emissions network, with planned CO₂ capture capacity of 7.9 million tonnes a year. Supporting 31 separate projects, the network will capture and transport CO₂ from multiple sources in phase two (12).

In recent years, the UK has seen considerable development over multiple regions. These include the Humber Zero network and the nearby Zero Carbon Humber and net zero Teesside networks – the latter two recently combining as the East Coast Cluster. More networks are underway in Northern Scotland (Acorn), Wales and England (HyNet North West) and South Wales (South Wales industrial cluster). All are based in areas with heavy industry – including oil refineries, power stations and natural gas processing plants – with reasonable proximity to offshore storage.

In addition to climate mitigation, these UK networks are driven by the social and economic value they will deliver. They will protect jobs in industries that would otherwise be emissions-intensive and incompatible with the net zero commitment, and create many new ones. Work will be available in designing, constructing, operating and maintaining the CCS infrastructure and new low emission industries, such as blue hydrogen production, that the network will support.
The world is currently confronting two challenges of potentially immense proportions: the devastating health and social costs of the COVID-19 pandemic, and the mounting threats of climate change, environmental degradation, and biodiversity loss. A failure to tackle either of these crises strongly and effectively will weaken progress on the other; the response to both must be global, urgent and on great scale.

Against this backdrop, the number of countries that have pledged to achieve net zero emissions has grown rapidly over the last 18 months and now covers around 70 per cent of global emissions of CO2. In September 2020 at the UN, President Xi committed China to achieving carbon neutrality by 2060. Korea and Japan followed and committed to hitting a 2050 target for net zero. The election of President Biden changed US policy; after rejoining the Paris Agreement the US has now committed to reaching net zero emissions by 2050. This is a step forward of huge significance.

At the G7 Summit in Carbis Bay, G7 Leaders pledged to protect our planet by supporting a green revolution that creates jobs, cuts emissions and seeks to limit the rise in global temperatures to 1.5 degrees. In a world of fractured politics, action on climate can now draw nations and peoples together and we have a chance to both manage the immense risks of climate change and find a new sustainable, inclusive, and resilient path to development and growth.

Governments must put forward credible pathways to meet the climate net zero commitments, including the preparation and submission of well-specified national determined contributions (NDCs) ahead of COP26 and putting in place sufficiently strong and green recovery programmes for delivery.

It has been clear for some time that achieving net zero emissions by mid-century will require the rapid deployment of all available abatement technologies as well as the early retirement of some emission-intensive facilities and retrofitting others with technologies like CCS. It is also clear that carbon dioxide removal will be required, both through nature-based and technology-based solutions.

More investment is urgently needed in the green economy to boost low-carbon technologies, such as renewable energy and electric vehicles, and to invest in the necessary changes to infrastructure, such as home heating and CO2 pipelines and storage, in order to reach the targets of net zero emissions by 2050.

As a society, we have a fundamental responsibility towards future generations to tackle climate change. Time is short, but we have in our hands a different model of development. It is the sustainable, resilient, and inclusive growth story of the 21st century.

We have green bonds and green loans, but we need to create more transition-labelled financial products that enable more investment in the companies doing the hard work of decarbonising using CCS. International climate agencies, like the IPCC, agree that a transition to a net zero economy will require a large scale-up of CCS facilities. Consequently, financing CCS is a critical component of emissions reductions.

Governments must put forward credible pathways to meet the climate net zero commitments, including the preparation and submission of well-specified national determined contributions (NDCs) ahead of COP26 and putting in place sufficiently strong and green recovery programmes for delivery.

It has been clear for some time that achieving net zero emissions by mid-century will require the rapid deployment of all available abatement technologies as well as the early retirement of some emission-intensive facilities and retrofitting others with technologies like CCS. It is also clear that carbon dioxide removal will be required, both through nature-based and technology-based solutions.

More investment is urgently needed in the green economy to boost low-carbon technologies, such as renewable energy and electric vehicles, and to invest in the necessary changes to infrastructure, such as home heating and CO2 pipelines and storage, in order to reach the targets of net zero emissions by 2050.

As a society, we have a fundamental responsibility towards future generations to tackle climate change. Time is short, but we have in our hands a different model of development. It is the sustainable, resilient, and inclusive growth story of the 21st century.

We have green bonds and green loans, but we need to create more transition-labelled financial products that enable more investment in the companies doing the hard work of decarbonising using CCS. International climate agencies, like the IPCC, agree that a transition to a net zero economy will require a large scale-up of CCS facilities. Consequently, financing CCS is a critical component of emissions reductions.

Now more than ever it is clear that carbon capture and storage is needed urgently. Whether CO2 is captured from a point source or captured from the air, whether captured from an industrial source or captured from a power plant, whether captured using ecosystems or captured using reactive rocks, all of these will be essential technologies in one place or another around the globe. Accepting that different solutions are needed for different people in different regions around the world is key to an inclusive approach to making progress in scaling up CCS. We have to move beyond ‘this or that’ to ‘this and that’ and succeed in doubling the growth rate for new CCS deployments – a critical step in making sure that CCS contributes at the speed and scale needed to meet our climate targets.
2.0 GLOBAL STATUS OF CCS

2.2 GLOBAL CCS FACILITIES UPDATE AND TRENDS

BLUE HYDROGEN PROJECTS

Blue hydrogen involves the use of fossil fuels to produce clean hydrogen. The CO₂ emissions are captured and permanently stored. Many blue hydrogen projects are underway:

- UK blue hydrogen projects will provide clean hydrogen fuel to help decarbonise other local businesses. All with CO₂ beneath the North Sea, benefitting from economies of scale provided by their host networks. They include:
 - Equinor’s Saltend hydrogen project – an anchor for the Net Zero Teesside network
 - BP developing a hydrogen plant as part of the Net Zero Teesside network
 - Phillips 66 developing a blue hydrogen project at its Humber refinery.

The previously mentioned Porthos network is emerging as a globally important hydrogen hub. All four of its CO₂ capture sources are blue hydrogen plants – operated by ExxonMobil, Shell, Air Liquide and Air Products.

Complementing its blue hydrogen development in the Netherlands, Air Products recently announced a blue hydrogen project in Edmonton, Alberta, Canada (13). Based on autothermal reforming hydrogen technology, it will supply the Alberta region with industrial scale clean hydrogen to reduce greenhouse gas emissions there. The project incorporates a hydrogen-fuelled power station, to reduce the emissions intensity of the local power grid.

THE EMERGENCE OF STRATEGIC PARTNERSHIPS DRIVING CCS DEVELOPMENTS

The growing scale and complexity of CCS projects – especially those involving multiple players – means it is increasingly important to partner with a range of companies. Partnership activity is increasing between oil and gas technology; shipping; electricity generators and distributors; and financial services providers. In 2021 ExxonMobil established its new business – ExxonMobil Low Carbon Solutions (ELCS). ELCS will commercialise CCS technologies and develop new CCS projects (14). It has already announced plans for 20 new CCS developments worldwide and has $3 billion to invest by 2025. One initiative is the Houston Ship Channel CCS Innovation project – a proposal to develop a big CCS network in the Houston industrial cluster with the support of TxDOT.

Siemens and Aker Carbon Capture have partnered to develop CCS technology to capture CO₂ from gas turbines and gas power generation. G2, NETPower, Siemens and EIJ are working together to capture CO₂ at a liquefied natural gas (LNG) plant in Louisiana, US. LaFargeHolcim and Schuchhardt have partnered to develop capture plants at cement facilities in Europe and the US.

Italian oil major ENI is also moving into CCS in a big way. Its Ravenna US. LaFargeHolcim and Schlumberger have partnered to develop a hydrogen-fuelled power station, Edmonton, Alberta, Canada (13). Based on autothermal reforming hydrogen technology, Air Products recently announced a blue hydrogen project in

THE EMERGENCE OF STRATEGIC PARTNERSHIPS DRIVING CCS DEVELOPMENTS

The growing scale and complexity of CCS projects – especially those involving multiple players – means it is increasingly important to partner with a range of companies. Partnership activity is increasing between oil and gas technology; shipping; electricity generators and distributors; and financial services providers. In 2021 ExxonMobil established its new business – ExxonMobil Low Carbon Solutions (ELCS). ELCS will commercialise CCS technologies and develop new CCS projects (14). It has already announced plans for 20 new CCS developments worldwide and has $3 billion to invest by 2025. One initiative is the Houston Ship Channel CCS Innovation project – a proposal to develop a big CCS network in the Houston industrial cluster with the support of TxDOT.

Siemens and Aker Carbon Capture have partnered to develop CCS technology to capture CO₂ from gas turbines and gas power generation. G2, NETPower, Siemens and EIJ are working together to capture CO₂ at a liquefied natural gas (LNG) plant in Louisiana, US. LaFargeHolcim and Schuchhardt have partnered to develop capture plants at cement facilities in Europe and the US.

Italian oil major ENI is also moving into CCS in a big way. Its Ravenna US. LaFargeHolcim and Schlumberger have partnered to develop a hydrogen-fuelled power station, Edmonton, Alberta, Canada (13). Based on autothermal reforming hydrogen technology, it will supply the Alberta region with industrial scale clean hydrogen to reduce greenhouse gas emissions there. The project incorporates a hydrogen-fuelled power station, to reduce the emissions intensity of the local power grid.

THE EMERGENCE OF STRATEGIC PARTNERSHIPS DRIVING CCS DEVELOPMENTS

The growing scale and complexity of CCS projects – especially those involving multiple players – means it is increasingly important to partner with a range of companies. Partnership activity is increasing between oil and gas technology; shipping; electricity generators and distributors; and financial services providers. In 2021 ExxonMobil established its new business – ExxonMobil Low Carbon Solutions (ELCS). ELCS will commercialise CCS technologies and develop new CCS projects (14). It has already announced plans for 20 new CCS developments worldwide and has $3 billion to invest by 2025. One initiative is the Houston Ship Channel CCS Innovation project – a proposal to develop a big CCS network in the Houston industrial cluster with the support of TxDOT.

Siemens and Aker Carbon Capture have partnered to develop CCS technology to capture CO₂ from gas turbines and gas power generation. G2, NETPower, Siemens and EIJ are working together to capture CO₂ at a liquefied natural gas (LNG) plant in Louisiana, US. LaFargeHolcim and Schuchhardt have partnered to develop capture plants at cement facilities in Europe and the US.

Italian oil major ENI is also moving into CCS in a big way. Its Ravenna US. LaFargeHolcim and Schlumberger have partnered to develop a hydrogen-fuelled power station, Edmonton, Alberta, Canada (13). Based on autothermal reforming hydrogen technology, it will supply the Alberta region with industrial scale clean hydrogen to reduce greenhouse gas emissions there. The project incorporates a hydrogen-fuelled power station, to reduce the emissions intensity of the local power grid.

THE EMERGENCE OF STRATEGIC PARTNERSHIPS DRIVING CCS DEVELOPMENTS

The growing scale and complexity of CCS projects – especially those involving multiple players – means it is increasingly important to partner with a range of companies. Partnership activity is increasing between oil and gas technology; shipping; electricity generators and distributors; and financial services providers. In 2021 ExxonMobil established its new business – ExxonMobil Low Carbon Solutions (ELCS). ELCS will commercialise CCS technologies and develop new CCS projects (14). It has already announced plans for 20 new CCS developments worldwide and has $3 billion to invest by 2025. One initiative is the Houston Ship Channel CCS Innovation project – a proposal to develop a big CCS network in the Houston industrial cluster with the support of TxDOT.

Siemens and Aker Carbon Capture have partnered to develop CCS technology to capture CO₂ from gas turbines and gas power generation. G2, NETPower, Siemens and EIJ are working together to capture CO₂ at a liquefied natural gas (LNG) plant in Louisiana, US. LaFargeHolcim and Schuchhardt have partnered to develop capture plants at cement facilities in Europe and the US.

Italian oil major ENI is also moving into CCS in a big way. Its Ravenna US. LaFargeHolcim and Schlumberger have partnered to develop a hydrogen-fuelled power station, Edmonton, Alberta, Canada (13). Based on autothermal reforming hydrogen technology, it will supply the Alberta region with industrial scale clean hydrogen to reduce greenhouse gas emissions there. The project incorporates a hydrogen-fuelled power station, to reduce the emissions intensity of the local power grid.

THE EMERGENCE OF STRATEGIC PARTNERSHIPS DRIVING CCS DEVELOPMENTS

The growing scale and complexity of CCS projects – especially those involving multiple players – means it is increasingly important to partner with a range of companies. Partnership activity is increasing between oil and gas technology; shipping; electricity generators and distributors; and financial services providers. In 2021 ExxonMobil established its new business – ExxonMobil Low Carbon Solutions (ELCS). ELCS will commercialise CCS technologies and develop new CCS projects (14). It has already announced plans for 20 new CCS developments worldwide and has $3 billion to invest by 2025. One initiative is the Houston Ship Channel CCS Innovation project – a proposal to develop a big CCS network in the Houston industrial cluster with the support of TxDOT.

Siemens and Aker Carbon Capture have partnered to develop CCS technology to capture CO₂ from gas turbines and gas power generation. G2, NETPower, Siemens and EIJ are working together to capture CO₂ at a liquefied natural gas (LNG) plant in Louisiana, US. LaFargeHolcim and Schuchhardt have partnered to develop capture plants at cement facilities in Europe and the US.

Italian oil major ENI is also moving into CCS in a big way. Its Ravenna US. LaFargeHolcim and Schlumberger have partnered to develop a hydrogen-fuelled power station, Edmonton, Alberta, Canada (13). Based on autothermal reforming hydrogen technology, it will supply the Alberta region with industrial scale clean hydrogen to reduce greenhouse gas emissions there. The project incorporates a hydrogen-fuelled power station, to reduce the emissions intensity of the local power grid.

THE EMERGENCE OF STRATEGIC PARTNERSHIPS DRIVING CCS DEVELOPMENTS

The growing scale and complexity of CCS projects – especially those involving multiple players – means it is increasingly important to partner with a range of companies. Partnership activity is increasing between oil and gas technology; shipping; electricity generators and distributors; and financial services providers. In 2021 ExxonMobil established its new business – ExxonMobil Low Carbon Solutions (ELCS). ELCS will commercialise CCS technologies and develop new CCS projects (14). It has already announced plans for 20 new CCS developments worldwide and has $3 billion to invest by 2025. One initiative is the Houston Ship Channel CCS Innovation project – a proposal to develop a big CCS network in the Houston industrial cluster with the support of TxDOT.

Siemens and Aker Carbon Capture have partnered to develop CCS technology to capture CO₂ from gas turbines and gas power generation. G2, NETPower, Siemens and EIJ are working together to capture CO₂ at a liquefied natural gas (LNG) plant in Louisiana, US. LaFargeHolcim and Schuchhardt have partnered to develop capture plants at cement facilities in Europe and the US.

Italian oil major ENI is also moving into CCS in a big way. Its Ravenna US. LaFargeHolcim and Schlumberger have partnered to develop a hydrogen-fuelled power station, Edmonton, Alberta, Canada (13). Based on autothermal reforming hydrogen technology, it will supply the Alberta region with industrial scale clean hydrogen to reduce greenhouse gas emissions there. The project incorporates a hydrogen-fuelled power station, to reduce the emissions intensity of the local power grid.
3.0 REGIONAL OVERVIEWS

1.0 INTRODUCTION
2.0 GLOBAL STATUS OF CCS
 2.1 CCS, NET ZERO AND ECONOMIC PROSPERITY 10
 2.2 GLOBAL CCS FACILITIES UPDATE AND TRENDS 12
 2.3 INTERNATIONAL POLICY UPDATE 22
3.0 REGIONAL OVERVIEWS
 3.1 NORTH AMERICA 26
 3.2 ASIA PACIFIC 32
 3.3 EUROPE AND NEARBY REGIONS 38
 3.4 GULF COOPERATION COUNCIL STATES 44
4.0 PATHWAYS IN FOCUS
 4.1 ENVIRONMENTAL, SOCIAL AND GOVERNANCE 50
 4.2 FINANCING CCS 50
 4.3 CCS NETWORKS 53
 4.4 INDUSTRY 54
 4.5 HYDROGEN 55
 4.6 TECHNOLOGY-BASED CO₂ REMOVAL 58
 4.7 MINERAL CARBONATION 59
5.0 APPENDICES
 5.1 COMMERCIAL CCS FACILITIES AND PROJECTS 62
 5.2 CCS NETWORKS 68
 5.3 CO₂ GEOLOGICAL STORAGE 70
6.0 REFERENCES 76
More than 40 new projects and networks have been announced since the release of the 2020 Status Report. The US Energy Act of 2020 passed, which authorised more than US$6 billion for CCS research, development and demonstration.

US ENERGY ACT PASSED

AUTHORIZING MORE THAN $6 BILLION IN CCS RESEARCH, DEVELOPMENT & DEMONSTRATION

Two large-scale CCS networks with bio-refineries were announced in the US Midwest, facilitated by low CO₂ capture costs from ethanol production and potential access to 45Q and LCFS incentives.

TWO LARGE-SCALE CCS NETWORKS

FACILITATED BY LOW CO₂ CAPTURE COSTS FROM ETHANOL PRODUCTION & POTENTIAL ACCESS TO 45Q AND LCFS INCENTIVES

Support for CCS in Canada greatly accelerated with newly proposed CCS incentive policies and continued investment in CCS technologies. Large and diverse CCS projects and network elements were announced – with the Province of Alberta leading the way.

CCS ACCELERATION TECHNOLOGY PROJECTS POLICY

MORE CCS INTEGRATION AT LNG FACILITIES

Market interest in low carbon LNG is leading to the announced integration of CCS at more LNG facilities.

More than 40 new CCS networks and projects have been announced since the publication of the 2020 Global Status of CCS Report, marking a significant trend in North America. Many factors combined to enable CCS development in the US and Canada, including enhanced government climate change priorities, the return to the Paris Agreement by the US, finalisation of 45Q regulations and anticipated global demand for low carbon fuels and products. Investment in CCS technologies was also stimulated by growing awareness of the challenges of decarbonisation.

REGIONAL OVERVIEW AND TRENDS

CCS networks – some of the largest ever – were announced amid increasing regulatory support and a backdrop of ambitious climate change targets. Announced networks included large clusters of emitters located near options for infrastructure and geological storage. Two diverse CCS networks in the US Midwest were also announced, facilitated by potential access to 45Q and the California low carbon fuel standard (LCFS), and the relatively low cost of CO₂ capture from ethanol plants.

Anticipated buyer demand for manufactured products and fuels with a lower CO₂ footprint accelerated CCS projects in hard-to-abate sectors, as buyers more definitively considered the carbon footprints of products and their supply chains. Several pilot and commercial projects were announced and initiated by the cement industry, which despite the challenges of higher capture costs, has taken a proactive approach to CCS implementation in response to expected future demand for low carbon cement products.

Large-scale, low carbon fuel projects also emerged as a market approach with the announced integration of CCS into planned liquified natural gas (LNG) projects. Technologies that capture CO₂ directly from flue gas streams using solid adsorbents or other innovative methods received commercial support from public and private investors. Support for continued deployment of the Allam-Fetvedt Cycle was confirmed by the announcement of a feasibility study in Canada and two at-scale projects in the US utilising this pre-combustion CCS technology.

CCS technologies capable of delivering negative emissions, including both direct air capture (DACCS) and bioenergy with CCS (BECCS), were supported by corporate net zero pledges from a broad set of industries, including major technology and online retail. Investments by technology companies in carbon removal technologies are an example of this trend.

While attention was understandably focused on new project announcements, it is worth noting that more than half of the world’s operating commercial CCS facilities are located in the US or Canada and most have operated reliably for years. For example, the Shute Creek facility in Wyoming has captured and stored more than 110 MTCO₂ since it commenced operation in 1986. While the Petra Nova and Lost Cabin facilities remain inactive, several other CCS facilities in the Americas also reached impressive storage milestones in the past year. More than 40 million tonnes of CO₂ from the Great Plains Synfuels Plant, 20 million tonnes from the Tariff Natural Gas Processing Plant, and 11 million tonnes from the Enid Fertilizer Plant have been captured and stored to date.

UNITED STATES

Policy

Major growth for CCS policy support emerged in the US. In the 2021 financial year (FY 21) Congress appropriated US$228.3 million for carbon capture, utilisation, and storage (CCUS), a US$10.5 million increase from the previous year’s funding for the Office of Fossil Energy and Carbon Management (9). Using this, and prior fiscal year funds, the US Department of Energy (DOE) committed or awarded co-funding agreements for front-end engineering and design (FEED) studies for technologies to capture CO₂ from industrial and natural gas sources, DAC and CO₂ utilisation and geological storage. The DOE also released a Hydrogen Strategy (10) that detailed the role for CCS as part of the transition to a hydrogen economy.

The US Energy Act of 2020 (11) passed in December 2020 as part of the Stimulus Bill. More than US$8 billion was authorised for CCS research, development, and demonstration (RD&D) programs in the DOE and Environmental Protection Agency (EPA) for FY 21 – FY 25. This significant funding milestone includes:

- US$2.6 billion for six commercial-scale demonstrations (natural gas, coal, industrial)
- US$1 billion for large-scale pilot projects
- US$910 million for DOE low-TRL level RD
- US$800 million for a large-scale carbon storage and validation program
- US$200 million for FEED studies
- More than US$1 billion for other activities.

The Treasury and Internal Revenue Service (IRS) provided, in January 2021, long-awaited regulatory certainty regarding implementation of 45Q tax credits (12). The ruling included important clarifications about geological storage certification, aggregation of multiple projects, reduction of the lookback period for credit reclaim, and a broader definition of carbon utilisation. The US Energy Act of 2020, referred to above, extended the beginning of construction deadline1 to 1 January 2026 (11).

Clear support emerged for CCS with major bills introduced in Congress during 2021. Collectively, this legislation (none of which had yet been signed into law at the time this article was finalised) includes elements that support the deployment of CCS including:

- modifications to 45Q that –
 - significantly raise the credit value for geological storage, utilisation and DAC
 - provide a direct pay option
 - extend the beginning of construction deadline to ten years
 - allow the credit to more easily offset tax obligations for multinational corporations

1 45Q is a US tax credit for capturing and storing carbon.

2 The Allam-Fetvedt Cycle is an innovative natural gas (or syngas from gasification of coal) fired power generation technology with inherent CO₂ capture.

3 Technology Readiness Level (TRL). There are 9 TRL levels, ranging from TRL 1 – basic research through to TRL 9 – fully proven and ready for commercial deployment.

4 The ‘lookback period’ is the portion of the recapture period during which the IRS can reclaim section 45Q credits after a leakage event (12).

5 The ‘beginning of construction’ deadline is the date that construction must begin for projects to qualify for the 45Q tax credit. Methods for establishing the beginning of construction have been defined by the IRS (24).
LARGE-SCALE CCS NETWORKS

Recognition of the emissions mitigation and economic benefits of CCS was illustrated by the announcement of several large-scale CCS networks. The largest of these was ExxonMobil’s proposal for a Houston Ship Channel CCS Innovation Zone which seeks to bring together multiple stakeholders in support of a concept to capture up to 100 Mtpa of CO2 with permanent geological storage in offshore Gulf of Texas waters.

Elements of three large-scale CCS networks were announced in Alberta, Canada. Shell Canada announced Polaris CCS, a two-phase project at its Scotford Complex near Edmonton. The first phase would capture about 0.75 Mtpa of CO2 from the Scotford refinery and chemicals plant. The second phase would create a CO2 storage hub to further decarbonise Shell’s facilities and provide third-party storage. Fully built, the hub could store up to 10 Mtpa of CO2 with a capacity of about 300 MtCO2 over the life of the project.

Pembina and TC Energy revealed plans to jointly develop the Alberta Carbon Grid (ACG), an open-access, large-scale system that would transport more than 20 Mtpa of CO2 to a sequestration location northeast of Redwater and to other third-party sequestration locations (28).

The Pathways CCS system was announced by the Oil Sands Pathways to Net Zero, an alliance of Canadian oil sands producers. The proposed CO2 trunkline would link as many as 20+ oil sands facilities to a storage site near Cold Lake. The first phase of the project would capture 8.5 Mtpa of CO2 from eight facilities, and fully built, the project would capture up to 40 Mtpa of CO2 (29).

• financing CO2 infrastructure and storage and funding for permitting these projects
• modifications to existing 48A tax credits for CCS equipment on coal-fired power plant retrofits
• enabling the use of a tax-advantaged, master limited partnership structure
• purchase of tax-exempt private activity bonds to finance CCS retrofits.

Regulatory developments

A critical step for CCS project development is obtaining permits for CO2 injection wells through EPA’s Underground Injection Control Class VI program. EPA manages the Class VI well permitting process with the exception of delegated primacy to North Dakota and Wyoming. Louisiana has submitted a Class VI Primacy Application to EPA (13). In response to increased interest in Class VI well permits, EPA has added information to its website including a Class VI permit application outline, a table of permitted and proposed Class VI wells and video tutorials (14).

The Texas General Land Office issued in April 2021 its first Request for Proposal (RFP) to establish and operate a geological CO2 storage repository under submerged land in offshore Jefferson County, including the construction of transportation and storage infrastructure (15). This RFP was the first of its kind for a potential CO2 storage site in offshore Texas waters.

Geological storage developments

Large volume, highly permeable deep saline formations with high CO2 injectivity potential are critical resources for CCS networks and projects. Characterisation studies undertaken by the DOE’s National Energy Technology Laboratory (NETL), and further potential storage formation exploration and appraisal by NETL’s CarbonSAFE program, have advanced the identification of suitable US onshore greenfield CO2 storage sites. These studies should provide a higher level of confidence to support CCS developments.

CANADA

Policy

The Government of Canada released A Healthy Environment and a Healthy Economy in December 2020 (16). This policy document proposed the development of a comprehensive CCUS strategy for Canada and launched a Net Zero Challenge for large industrial emitters to encourage plans for net zero emissions by 2050. A ‘Strategic Innovation Fund – Net Zero Accelerator’ was also announced to provide CA$3 billion over the next five years to fund initiatives including decarbonisation projects for large emitters. The Hydrogen Strategy for Canada was released in December 2020 by Natural Resources Canada (17). It described Canada’s blue hydrogen production experience and the continued potential for CCS as part of an expanded, low carbon intensity hydrogen strategy.

“WE NEED TO MOVE CCS AND CDR OUT OF THEIR SILOS AND EXPAND FOCUS ON DECARBONISING SUPPLY CHAINS, INCLUDING BUILDING MATERIALS, CHEMICALS, AND FUELS.”

Dr. Jennifer Wilcox

We have little time left to avoid some of the worst impacts of climate change and its threats to our communities, our public health and our economies. We can tackle this challenge by avoiding carbon emissions through point source carbon capture coupled to reliable storage (CCS) and removing CO2 from the accumulated pool in the atmosphere (CDR). We know CDR will be critical to address the hard-to-abate sectors on the path towards net zero carbon emissions. To accomplish this, we need to move CCS and CDR out of their silos and expand focus on decarbonising supply chains, including building materials, chemicals, and fuels if done strategically and collaboratively, deploying these approaches will not only help us address the climate crisis, but it will also spur the creation of high-quality clean economy jobs – helping those populations and communities that have been disproportionately affected by climate change.

7 Tax exempt private activity bonds are tax-free bonds issued by local or state governments, with lengthy pay back periods.

6 These elements were passed by the Senate in August 2021 as part of the Bipartisan Investment Infrastructure and Jobs Act.

3 These areas are included in the Natural Resources Canada (2019) Pathways to Net Zero, an alliance of Canadian oil sands producers. The proposed CO2 trunkline would link as many as 20+ oil sands facilities to a storage site near Cold Lake. The first phase of the project would capture 8.5 Mtpa of CO2 from eight facilities, and fully built, the project would capture up to 40 Mtpa of CO2 (29).
3.0 REGIONAL OVERVIEWS

3.1 NORTH AMERICA

BIOREFINERIES AND CCS NETWORKS

More certainty around the 45Q tax credit, the relatively low CO2 capture cost from bioethanol production, and the opportunity to access the California LCFS via the production of low carbon ethanol, has enabled the proposed development of two large-scale CCS network projects in the US Midwest:

- Summit Carbon Solutions announced a project that would link more than thirty bio refineries, with a total CO2 capture of about 8 Mtpa, across the US Midwest to geological storage sites in North Dakota (34). This project would potentially be both the largest CCS network and the largest BECCS project in the world.
- Navigator CO2 Ventures – in collaboration with Valero and BlackRock – has proposed a CCS network spanning more than 1,930 km (1,200 miles) across five states in the US Midwest. The Heartland Greenway Pipeline would transport CO2 from bio refineries and other industrial facilities in Iowa, Illinois, Nebraska, Minnesota, and South Dakota to a geological storage site in Illinois with a capacity of up to 5 Mtpa (35), (36).

NextDecade announced the integration of CCS into its planned Rio Grande LNG facility – Brownsville, Texas. Courtesey of NextDecade Corporation

ROLE OF CCS IN LOW CARBON LNG

With growing market interest in lower carbon LNG, the integration of CCS was either announced or under consideration this past year for more LNG facilities than ever before:

- NextDecade announced the integration of CCS into its planned Rio Grande LNG project in Texas as part of an approach to decarbonise its LNG supply chain. The project would capture up to 5 Mtpa of CO2 (33).
- Venture Global LNG announced plans to capture and sequester an estimated 0.5 Mtpa of CO2 from two facilities under construction – Calcasieu Pass LNG and Plaquemines LNG (34).
- Sempra indicated the consideration of CCS at its Cameron LNG facility. Similarly, Cheniere Energy is considering CCS at its Corpus Christi LNG facility in Texas and its Sabine Pass LNG facility in Louisiana (35,36).
- G2 Net-Zero LNG, located on the Calcasieu Ship Channel, also announced that it will use NET Power’s Allam-Fetvedt Cycle technology which would remove CO2 emissions from the facility’s natural gas liquefaction process (37).
- NG investors are also considering the integration of CCS at their remaining LNG projects that use CCS to reduce the lifecycle carbon intensity of fossil fuels (19). Canada’s recent Budget 2021 (20) also proposed an investment tax credit – to be effective in 2022 – for capital invested in CCUS projects with the goal of reducing CO2 emissions by at least 20 Mtpa.

The Government of Alberta (Alberta) announced, in September 2020, that it was investing up to CA$750 million from its Technology Innovation and Emissions Reduction (TIER) program for new industrial Energy Efficiency and Carbon Capture Utilisation and Storage Grant Program (21). Grants would be for improvements at facilities regulated, or eligible to be regulated, under TIER. TIER would also invest CA$9.5 million through Emissions Reductions Alberta to support CCUS projects.

Alberta also moved forward with policies to enable CCS, including the ongoing development of a Hydrogen Roadmap to define how Alberta will build a low-carbon hydrogen industry (22). Alberta Energy also issued Information Letter 2021-19 that described a planned Carbon Sequestration Tenure Management process (23). Through a competitive process, the Alberta government would issue carbon sequestration rights to advance development of carbon storage hubs. The process would apply only to dedicated geological storage hubs and not to projects that store CO2 for enhanced oil recovery (EOR). The process remained in development at the time of publication.

Proposed regulations for the Clean Fuel Standard were issued by the Canadian Government in December 2020 (18), with a target to publish final regulations in late 2021, and reduction requirements coming into force on 1 December 2022. One pathway to create compliance credits for the Clean Fuel Standard is to undertake projects that use CCS to reduce the lifecycle carbon intensity of fossil fuels (19). Canada’s recent Budget 2021 (20) also proposed an investment tax credit – to be effective in 2022 – for capital invested in CCUS projects with the goal of reducing CO2 emissions by at least 20 Mtpa.

The Government of Alberta (Alberta) announced, in September 2020, that it was investing up to CA$750 million from its Technology Innovation and Emissions Reduction (TIER) program for new industrial Energy Efficiency and Carbon Capture Utilisation and Storage Grant Program (21). Grants would be for improvements at facilities regulated, or eligible to be regulated, under TIER. TIER would also invest CA$9.5 million through Emissions Reductions Alberta to support CCUS projects.

Alberta also moved forward with policies to enable CCS, including the ongoing development of a Hydrogen Roadmap to define how Alberta will build a low-carbon hydrogen industry (22). Alberta Energy also issued Information Letter 2021-19 that described a planned Carbon Sequestration Tenure Management process (23). Through a competitive process, the Alberta government would issue carbon sequestration rights to advance development of carbon storage hubs. The process would apply only to dedicated geological storage hubs and not to projects that store CO2 for enhanced oil recovery (EOR). The process remained in development at the time of publication.

Proposed regulations for the Clean Fuel Standard were issued by the Canadian Government in December 2020 (18), with a target to publish final regulations in late 2021, and reduction requirements coming into force on 1 December 2022. One pathway to create compliance credits for the Clean Fuel Standard is to undertake projects that use CCS to reduce the lifecycle carbon intensity of fossil fuels (19). Canada’s recent Budget 2021 (20) also proposed an investment tax credit – to be effective in 2022 – for capital invested in CCUS projects with the goal of reducing CO2 emissions by at least 20 Mtpa.

The Government of Alberta (Alberta) announced, in September 2020, that it was investing up to CA$750 million from its Technology Innovation and Emissions Reduction (TIER) program for new industrial Energy Efficiency and Carbon Capture Utilisation and Storage Grant Program (21). Grants would be for improvements at facilities regulated, or eligible to be regulated, under TIER. TIER would also invest CA$9.5 million through Emissions Reductions Alberta to support CCUS projects.

Alberta also moved forward with policies to enable CCS, including the ongoing development of a Hydrogen Roadmap to define how Alberta will build a low-carbon hydrogen industry (22). Alberta Energy also issued Information Letter 2021-19 that described a planned Carbon Sequestration Tenure Management process (23). Through a competitive process, the Alberta government would issue carbon sequestration rights to advance development of carbon storage hubs. The process would apply only to dedicated geological storage hubs and not to projects that store CO2 for enhanced oil recovery (EOR). The process remained in development at the time of publication.

Regulatory developments

Following court challenges by several provinces, the Greenhouse Gas Pollution Pricing Act 2018 (GGPPA) was found in March 2021 to be constitutional by the Supreme Court of Canada (24). The GGPPA sets minimum national standards for emissions from carbon-based fuels and CO2 emitting industries. The court’s ruling held that climate change is a matter of national concern. The affirmation of this legislation will enable the proposed increase in Canada’s carbon price from CA$40 per tonne of CO2 as of 1 April 2021 to a proposed CA$170 per tonne of CO2 by 2030 (25).

“WE SEE THIS TECHNOLOGY AS FOUNDATIONAL TO ACHIEVING SIGNIFICANT EMISSIONS REDUCTIONS WHILE ALSO DRIVING LONG-TERM ECONOMIC ACTIVITIES AND HELPING CANADA REACH ITS CLIMATE GOALS.”

ONYA SAVAGE

Minister of Energy, PROVINCE OF ALBERTA

As a pioneer in carbon capture, utilisation and storage development, Alberta has witnessed – firsthand – its ability to reduce emissions in a variety of sectors, including oil and gas, the fertilizer industry, and in hydrogen production. We see this technology as foundational to achieving significant emission reductions while also driving long-term economic activities and helping Canada reach its climate goals. We applaud the efforts of the Global CCS Institute to promote and support the development of this technology around the world.
3.0 REGIONAL OVERVIEWS

3.2 ASIA PACIFIC

The Asia Pacific region includes countries with some of the largest and fastest growing greenhouse gas emission inventories in the world. CCS will be particularly important to achieve ambitious climate targets. Although the last 12 months have seen several positive developments in the region, investment in commercial CCS facilities lags behind North America and Europe.

CCS PROJECT PIPELINE GROWTH

Five new large-scale facilities in the Asia Pacific region have been added to the Institute’s CO2RE Database. One important factor that differentiates CCS development in Asia Pacific from Europe or North America, is that the majority of new projects are emerging in developing countries where emissions growth is the most rapid and policy support is insufficient.

AUSTRALIA

Projects

New CCS facilities and hubs have been announced:

- Bridgeport Energy is developing its Moenie Project, targeting around 1 Mtpa CO2 injection, sourced from power stations nearby, for CO2-EOR and storage in southeast Queensland. The project is scheduled to start injection in 2023, ramping up to 1 Mtpa by 2028.
- Santos and Eni have formed a partnership to develop a CCS storage hub at the Bayu-Undan field in the Timor Sea, offshore Timor-Leste, storing CO2 from their own operations and potentially from other emitters (38). Details about the hub are still emerging.

Previously announced facilities have progressed:

- Santos’ 1.7 Mta Moomba Project in the Cooper Basin, which will store CO2 from natural gas processing, has completed FEED, obtained environmental approval from the South Australian Government and is expected to make a final investment decision before the end of 2021.
- Chevron’s Gorgon CCS Project had technical difficulties in pressure management and will not meet the government requirement that at least 80 percent of reservoir CO2 over every five years (rolling average) should be sequestered underground (39). Nevertheless, the project had injected close to 5 Mt of CO2 as of mid-July 2021.

CHINA

China launched its emissions trading system, covering 2,225 power plants, which collectively emit over 4,000 million tonnes of CO2 per annum.

NEW COMMERCIAL CCS PROJECTS IN THE ASIA PACIFIC REGION (JUNE 2021)

![CCS FACILITY COUNTRY INDUSTRY STAGE OF DEVELOPMENT EXPECTED START OF OPERATION

<table>
<thead>
<tr>
<th>CCS FACILITY</th>
<th>COUNTRY</th>
<th>INDUSTRY</th>
<th>STAGE OF DEVELOPMENT</th>
<th>EXPECTED START OF OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qiduian Taizhou Power Station Carbon Capture</td>
<td>China</td>
<td>Power</td>
<td>In construction</td>
<td>2023</td>
</tr>
<tr>
<td>Petronas Kauaiwai Gas Field Development Project</td>
<td>Malaysia</td>
<td>Natural Gas Processing</td>
<td>Early development</td>
<td>2025</td>
</tr>
<tr>
<td>Repsol Sakaimang Carbon Capture and Injection</td>
<td>Indonesia</td>
<td>Natural Gas Processing</td>
<td>Early development</td>
<td>2026</td>
</tr>
<tr>
<td>Bridgeport Energy Moenie CCUS Project</td>
<td>Australia</td>
<td>Power</td>
<td>Advanced development</td>
<td>2028 or earlier</td>
</tr>
<tr>
<td>PAU Central Sulawesi Clean Fuel Ammonia Production with CCUS</td>
<td>Indonesia</td>
<td>Chemical/Ammonia</td>
<td>Early development</td>
<td>Late 2020s</td>
</tr>
</tbody>
</table>

In June 2021, Australia and Singapore announced a joint initiative to work on low emissions fuels and technologies, including clean hydrogen and clean ammonia (44).

Regulatory developments

In a notable regional development, the Australian Government released its Technology Investment Roadmap: First Low Emissions Technology Statement, which identified CCS, clean hydrogen, energy storage, low carbon materials and soil carbon as priority technologies (41). Guided by the Technology Investment Roadmap, the Australian Government announced A$263.7 million in new funding to support CCS/CCUS projects and hubs and A$275.5 million to support four clean hydrogen hubs (42). The previously announced $10 million CCUS Development Fund was awarded to six projects covering natural gas processing, cement, DAC, biogas, and CO2 utilisation/mineralisation (43).

In June 2021, Australia and Singapore announced a joint initiative to work on low emissions fuels and technologies, including clean hydrogen and clean ammonia (44).

REGULATORY DEVELOPMENTS

In a notable regional development, the Australian Government released its Technology Investment Roadmap: First Low Emissions Technology Statement, which identified CCS, clean hydrogen, energy storage, low carbon materials, and soil carbon as priority technologies (41). Guided by the Technology Investment Roadmap, the Australian Government announced A$263.7 million in new funding to support CCS/CCUS projects and hubs and A$275.5 million to support four clean hydrogen hubs (42). The previously announced $10 million CCUS Development Fund was awarded to six projects covering natural gas processing, cement, DAC, biogas, and CO2 utilisation/mineralisation (43).

In June 2021, Australia and Singapore announced a joint initiative to work on low emissions fuels and technologies, including clean hydrogen and clean ammonia (44).

Regulatory developments

In a notable regional development, the Australian Government released its Technology Investment Roadmap: First Low Emissions Technology Statement, which identified CCS, clean hydrogen, energy storage, low carbon materials, and soil carbon as priority technologies (41). Guided by the Technology Investment Roadmap, the Australian Government announced A$263.7 million in new funding to support CCS/CCUS projects and hubs and A$275.5 million to support four clean hydrogen hubs (42). The previously announced $10 million CCUS Development Fund was awarded to six projects covering natural gas processing, cement, DAC, biogas, and CO2 utilisation/mineralisation (43).

In June 2021, Australia and Singapore announced a joint initiative to work on low emissions fuels and technologies, including clean hydrogen and clean ammonia (44).

Regulatory developments

In a notable regional development, the Australian Government released its Technology Investment Roadmap: First Low Emissions Technology Statement, which identified CCS, clean hydrogen, energy storage, low carbon materials, and soil carbon as priority technologies (41). Guided by the Technology Investment Roadmap, the Australian Government announced A$263.7 million in new funding to support CCS/CCUS projects and hubs and A$275.5 million to support four clean hydrogen hubs (42). The previously announced $10 million CCUS Development Fund was awarded to six projects covering natural gas processing, cement, DAC, biogas, and CO2 utilisation/mineralisation (43).

In June 2021, Australia and Singapore announced a joint initiative to work on low emissions fuels and technologies, including clean hydrogen and clean ammonia (44).
PETRONAS KASAWARI PROJECT

Petronas’ first large-scale CCS project is in the Kasawari Ph2 Field in offshore Sarawak. The field has an estimated reserve of three trillion cubic feet and contains high levels of CO₂. To monetise these high CO₂ gas resources, Petronas must abate reservoir CO₂ emissions. Gas production is expected to commence in 2023, producing up to 900 million standard cubic feet per day. The gas will be processed and liquefied at Petronas LNG Complex in Bintulu, Malaysia. The project plans to inject around 2.5 billion tonnes of CO₂ per annum (Petronas, 2021).

Petronas is working with several partners on aspects of the project and plans to commence injection in 2025. It is likely to be Southeast Asia’s first large-scale project sequestering CO₂.

MALAYSIA AND INDONESIA

Projects

It has been an exciting year for CCS in several Southeast Asian countries, with commercial facilities announced for the first time. Petronas has started working on its first CCS project (see breakout) and two potential regional offshore CCS hubs in Malaysia. The proposed hubs have the potential to store CO₂ from other countries in Southeast Asia and the broader Asia Pacific region.

Repsol announced its 2.5 Mtpa project in Sakakamang, South Sumatra, Indonesia. This facility will capture CO₂ from Repsol’s natural gas processing plant and permanently store it in nearby oilfields. It is well positioned to be an anchor for a South Sumatran CCS hub, reducing emissions from gas processing, power stations and other emitting sectors.

The Repsol project demonstrates the trend for large corporations, headquartered in developed countries with net zero commitments, to develop emissions-reducing CCS projects even in the absence of policy support, where CO₂ capture costs are very low. A feasibility study for the PAU Central Sulawesi Clean Fuel Ammonia Production with CCUS was initiated by a Japan-Indonesia consortium. They aim to develop a CCS-specific regulatory framework has begun, to assist policymakers and regulators in the region.

China

In May 2021, the Ministry of Ecology and Environment (MEE), within the National Development and Reform Commission issued a notice on carbon capture, utilisation and storage (CCUS) to guarantee the flexibility and security of the power grid. While a draft CCS development milestones:

• China Energy Investment Corporation’s Jinjie post-combustion carbon capture facility commenced commissioning in early 2021, and completed a 168-hour test run in June 2021. The facility has the capacity to capture 150,000 tonnes of CO₂ per year.

• Sinpec started constructing China’s first 1 Mtpa CO₂-EOR project in Shandong Province. The project will capture CO₂ from Qilu Fertiliser Plant and inject CO₂ into Shengli Oilfield for CO₂-EOR and storage. It is scheduled to commence operation towards the end of 2021 (45).

• Hebei Iron and Steel Group announced its plan to build CCS demonstration projects at its steel plant by 2030 (46).

Policy

As a result of China’s carbon neutrality pledge, various Chinese Government ministries have become more active in building understanding of CCS’s role in decarbonisation, laying the groundwork for policy development. For the first time, China’s Five-Year Plan (its fourteenth) includes large-scale CCUS demonstration projects (47).

In May 2021, the Ministry of Ecology and Environment (MEE), with several other ministries, announced support for CCUS pilot and demonstration projects in free trade zones (48). CCUS was also included in the China-US Joint Statement Addressing the Climate Crisis, issued in April 2021 (49). In June 2021, the National Development and Reform Commission issued a notice to request CCUS project information, with the aim of supporting major projects in the near future (50).

Realising carbon neutrality requires using multiple technologies, among which CCUS will play an indispensable part. Because of its own characteristics, CCUS will exert a decisive influence in large-scale emissions reductions for the energy and industrial sectors including power, steel, cement and chemicals. In addition, it will serve as an integral technology pathway for reaching carbon neutrality goals. CCUS has benefited from a great deal of experience in policy, technology and engineering perspectives. It has a great potential for deep decarbonisation in the energy and industrial sectors.

CHINA

Projects

President Xi’s September 2020 commitment for China to achieve carbon peaking before 2030 and carbon neutrality before 2060 has triggered renewed CCS interest and activity in China. This has raised the profile and relevance of subsequent CCS project development milestones:

• China Energy Investment Corporation’s Jinjie post-combustion carbon capture facility commenced commissioning in early 2021, and completed a 168-hour test run in June 2021. The facility has the capacity to capture 150,000 tonnes of CO₂ per year.

• Sinpec started constructing China’s first 1 Mtpa CO₂-EOR project in Shandong Province. The project will capture CO₂ from Qilu Fertiliser Plant and inject CO₂ into Shengli Oilfield for CO₂-EOR and storage. It is scheduled to commence operation towards the end of 2021 (45).

• Hebei Iron and Steel Group announced its plan to build CCS demonstration projects at its steel plant by 2030 (46).

Malaysia and Indonesia: Projects

It has been an exciting year for CCS in several Southeast Asian countries, with commercial facilities announced for the first time. Petronas has started working on its first CCS project (see breakout) and two potential regional offshore CCS hubs in Malaysia. The proposed hubs have the potential to store CO₂ from other countries in Southeast Asia and the broader Asia Pacific region.

Repsol announced its 2.5 Mtpa project in Sakakamang, South Sumatra, Indonesia. This facility will capture CO₂ from Repsol’s natural gas processing plant and permanently store it in nearby oilfields. It is well positioned to be an anchor for a South Sumatran CCS hub, reducing emissions from gas processing, power stations and other emitting sectors.

The Repsol project demonstrates the trend for large corporations, headquartered in developed countries with net zero commitments, to develop emissions-reducing CCS projects even in the absence of policy support, where CO₂ capture costs are very low. A feasibility study for the PAU Central Sulawesi Clean Fuel Ammonia Production with CCUS was initiated by a Japan-Indonesia consortium. They aim to develop a CCS-specific regulatory framework has begun, to assist policymakers and regulators in the region.

China: Regulatory developments

Public and private-sector stakeholders widely agree that the absence of CCS-specific law and regulation is a critical barrier to the deployment of CCS projects in this region. While a draft CCS regulation was introduced in Indonesia in 2019, it has yet to be formally endorsed by the relevant minister and President. A draft Presidential Regulation on Carbon Economic Value (a carbon pricing scheme) is likely to be issued in Indonesia after the pandemic-driven health crisis has stabilised. Once a Presidential Decree is issued, the Ministry of Energy and Mineral Resources may set up specific regulations to address terms related to CCS/CCUS. In Malaysia, development of a CCS-specific regulatory framework has begun, projected for completion in the first half of 2022. The proposed legislation will most likely be based upon the existing oil and gas production regime.
In July 2021, INPEX, JERA, JOGMEC and Abu Dhabi National sharing (56). Network to support capacity development and promote knowledge June 2021, the Japanese Government launched the Asia CCUS continues to explore further similar JCM funding opportunities. In
The JCM, an important ‘project-based bilateral offset crediting mechanism’ was launched in 2013 to support emissions reduction projects in
Japan continues to be a transnational CCS driver, via its clean energy programs:
• In October 2020, 40 tonnes of blue ammonia – ammonia made from hydrocarbons with associated CO2 emissions captured and stored underground – produced by Saudi Basic Industries Corporation, was shipped from Saudi Arabia to Japan for zero-emission power generation, marking a first for both countries (53).
• In December 2020, Japan Oil, Gas and Metals National Corporation (JOGMEC), Irkutsk Oil Company, Toyo Engineering Corporation and Ichiro Corporation agreed on a joint low-carbon ammonia value chain feasibility study between eastern Siberia and Japan. It includes the production of ammonia from natural gas and capturing associated CO2 emissions for CO2-EOR in Russia (54).
• In July 2021, INPEX, JERA, JOGMEC and Abu Dhabi National Oil Company (ADNOC) agreed to a joint study exploring the commercial feasibility of clean ammonia production from natural gas, with associated CO2 capture and sequestration for storage and CO2-EOR in the United Arab Emirates (55).
The Japanese Government continues to promote bilateral and multilateral CCUS collaborations. Japan is using its Joint Crediting Mechanism (JCM) to support the Gundih Project in Indonesia and continues to explore further similar JCM funding opportunities. In June 2021, the Japanese Government launched the Asia CCUS Network to support capacity development and promote knowledge sharing (56).
Countries with limited storage potential are investigating the transport and storage of their CO2 to other nations. This has led to renewed interest in considering and addressing legal barriers to transboundary CO2 movement and storage, respecting the London Protocol – an international marine agreement that governs the dumping of wastes in the marine environment – and relevant domestic laws and regulations. Greater collaboration will be critical. The proposed Bayu-Undan project is one cross-boundary project in the region. It will consider domestic and international legislation when sending CO2 from Australia to storage in Timor-Leste.
A regional storage potential assessment was completed by ExxonMobil, the National University of Singapore and the Institute. The assessment indicated great possibilities around southeast Asia. High-level estimates identified several locations, like South Sumatra, that offer low-cost storage hub opportunities.
Japan’s first full-chain CCS Project, the Tomakomai CCS Demonstration Project, displays the safety and reliability of CCS technology for offshore CO2 storage in our earthquake-prone country.
With ever rising expectations toward CCS technology as described in the IEA Special Report on CCUS, we recognise that our mission has reached a new phase.
Against this backdrop, Japan CCS established a consortium which was adopted to conduct the Japanese government’s demonstration project of CO2 ship transportation, a crucial technology for achieving the government’s goal of early social implementation of CCUS. Additionally, we also wish to implement the demonstration of carbon recycling technology utilising this CO2 and hydrogen obtained from existing facilities.
Japan CCS is also a proud supporting member, of the ‘Asia CCUS Network’, inaugurated by the Japanese government in June 2021. This Network provides support for the deployment of CCUS in Asian countries.
We look forward to introducing these new developments in a forthcoming update of the of the Global CCS Institute’s CC2RE Database of Projects.
In October 2020, amid an accelerated trend toward decarbonization, Japan declared an aim of carbon neutrality by 2050 and is furthering its status as a regional leader in clean energy programs. CCS is a vital technology for the realisation of carbon neutrality and Japan has been implementing efforts for its practical use, such as demonstrating the injection of 300,000 tonnes of CO2 in Tomakomai City and the shipment of CO2 that connects emission sources and storage sites.
In Asia, CCUS will be an essential technology for maintaining strong economic growth while achieving decarbonisation. Recognising this, Japan is playing a key role in promoting regional collaboration, providing opportunities to share technologies, experiences and insights. The recently established ‘Asia CCUS Network (ACN)’ seeks to contribute to the deployment of CCUS in Asia by sharing knowledge, conducting studies and undertaking capacity building.

CROSS-BORDER CO2 TRANSPORT AND STORAGE

GEOLOGICAL STORAGE DEVELOPMENTS

3.0 REGIONAL OVERVIEWS

3.2 ASIA PACIFIC

JAPAN Projects

Policy
The European Union made climate neutrality by 2050 a legally binding target, along with reducing 2030 net GHG emissions at least 55 per cent compared to 1990 levels. Its long-term low GHG emission development strategy submitted under the Paris Agreement – and those of 14 countries in the European region – includes CCS as a technology that can help Europe reach its climate goals. While growing recognition of CCS’s role in decarbonisation is strengthening its policy support, more progress is required.

Leading Europe’s ambition, in December 2020, the Norwegian Government took the pioneering decision to move ahead with the Langskip project. Construction is currently underway. CO₂ will initially be captured from HeidelbergCement’s Norcem plant in Brevik and, subject to additional funding being obtained, from Fortum Oslo Varme waste-to-energy (WtE) plant. The Northern Lights Joint Venture, established by Equinor, Shell and Total, is poised to manage the associated transport and storage facility, in discussions with potential customers, representing 48 Mtpa of CO₂, more than the current annual storage worldwide.

With the Dutch Government allocating the SDE+ subsidy, Porthos is poised to take an investment decision in early 2022, becoming the first commercial CCS project in an EU member state. Pictorially, Alexandre Dumas’s remaining musketeers may join the climate fight shortly. Late Summer TotalEnergies, Shell, EBN and Gasunie announced plans to develop Aramus a major CCS hub in the Netherlands. Proposals are emerging for a project named Dartagorn to develop CO₂ infrastructure in the Dunkirk region, enabling export of CO₂ to the Netherlands for permanent storage.

The UK government set an ambitious target for a 68 per cent reduction in GHG emissions by the end of 2030. It published a ten-point plan for a green industrial revolution, outlining its intention to establish CCUS in two industrial clusters by the mid-2020s, with four such sites by 2030, capturing in excess of 10 Mtpa of CO₂. To enable this, the government also announced a £1 billion CCS infrastructure fund. The UK Government outlined its intention to establish four CCUS industrial clusters by 2030, capturing 10 Mtpa of CO₂. Plans to build Europe’s first large-scale direct air capture facility in Scotland were unveiled. The Dreamcatcher project will use nearby renewable energy and CCS infrastructure to capture 0.5 – 1 Mt of atmospheric CO₂ each year.

The Northern Lights Joint Venture, which will manage the transport and storage facility, is in discussions with potential customers representing 48 Mtpa of CO₂ – more than the current annual storage worldwide. Construction is underway on the Norwegian project, Langskip.

The UK government set an ambitious target for a 68 per cent reduction in GHG emissions by the end of 2030. It published a ten-point plan for a green industrial revolution, outlining its intention to establish CCUS in two industrial clusters by the mid-2020s, with four such sites by 2030, capturing in excess of 10 Mtpa of CO₂. To enable this, the government also announced a £1 billion CCS infrastructure fund. The UK Government outlined its intention to establish four CCUS industrial clusters by 2030, capturing 10 Mtpa of CO₂.

There are now 35 projects in development in Europe. There are an increasing number of CO₂ removal projects in development across Europe. Blue Hydrogen features prominently. Plans to build Europe’s first large-scale direct air capture facility in Scotland were unveiled. The Dreamcatcher project will use nearby renewable energy and CCS infrastructure to capture 0.5 – 1 Mt of atmospheric CO₂ each year.

The Northern Lights Joint Venture, which will manage the transport and storage facility, is in discussions with potential customers representing 48 Mtpa of CO₂ – more than the current annual storage worldwide. Construction is underway on the Norwegian project, Langskip.

The European Union made climate neutrality by 2050 a legally binding target, along with reducing 2030 net GHG emissions at least 55 per cent compared to 1990 levels. Its long-term low GHG emission development strategy submitted under the Paris Agreement – and those of 14 countries in the European region – includes CCS as a technology that can help Europe reach its climate goals. While growing recognition of CCS’s role in decarbonisation is strengthening its policy support, more progress is required.

Leading Europe’s ambition, in December 2020, the Norwegian Government took the pioneering decision to move ahead with the Langskip project. Construction is currently underway. CO₂ will initially be captured from HeidelbergCement’s Norcem plant in Brevik and, subject to additional funding being obtained, from Fortum Oslo Varme waste-to-energy (WtE) plant. The Northern Lights Joint Venture, established by Equinor, Shell and Total, is poised to manage the associated transport and storage facility, in discussions with potential customers, representing 48 Mtpa of CO₂, more than the current annual storage worldwide.

With the Dutch Government allocating the SDE+ subsidy, Porthos is poised to take an investment decision in early 2022, becoming the first commercial CCS project in an EU member state. Pictorially, Alexandre Dumas’s remaining musketeers may join the climate fight shortly. Late Summer TotalEnergies, Shell, EBN and Gasunie announced plans to develop Aramus a major CCS hub in the Netherlands. Proposals are emerging for a project named Dartagorn to develop CO₂ infrastructure in the Dunkirk region, enabling export of CO₂ to the Netherlands for permanent storage.

The UK government set an ambitious target for a 68 per cent reduction in GHG emissions by the end of 2030. It published a ten-point plan for a green industrial revolution, outlining its intention to establish CCUS in two industrial clusters by the mid-2020s, with four such sites by 2030, capturing in excess of 10 Mtpa of CO₂. To enable this, the government also announced a £1 billion CCS infrastructure fund. The UK Government outlined its intention to establish four CCUS industrial clusters by 2030, capturing 10 Mtpa of CO₂. Plans to build Europe’s first large-scale direct air capture facility in Scotland were unveiled. The Dreamcatcher project will use nearby renewable energy and CCS infrastructure to capture 0.5 – 1 Mt of atmospheric CO₂ each year.

The Northern Lights Joint Venture, which will manage the transport and storage facility, is in discussions with potential customers representing 48 Mtpa of CO₂ – more than the current annual storage worldwide. Construction is underway on the Norwegian project, Langskip.

The European Union made climate neutrality by 2050 a legally binding target, along with reducing 2030 net GHG emissions at least 55 per cent compared to 1990 levels. Its long-term low GHG emission development strategy submitted under the Paris Agreement – and those of 14 countries in the European region – includes CCS as a technology that can help Europe reach its climate goals. While growing recognition of CCS’s role in decarbonisation is strengthening its policy support, more progress is required.

Leading Europe’s ambition, in December 2020, the Norwegian Government took the pioneering decision to move ahead with the Langskip project. Construction is currently underway. CO₂ will initially be captured from HeidelbergCement’s Norcem plant in Brevik and, subject to additional funding being obtained, from Fortum Oslo Varme waste-to-energy (WtE) plant. The Northern Lights Joint Venture, established by Equinor, Shell and Total, is poised to manage the associated transport and storage facility, in discussions with potential customers, representing 48 Mtpa of CO₂, more than the current annual storage worldwide.

With the Dutch Government allocating the SDE+ subsidy, Porthos is poised to take an investment decision in early 2022, becoming the first commercial CCS project in an EU member state. Pictorially, Alexandre Dumas’s remaining musketeers may join the climate fight shortly. Late Summer TotalEnergies, Shell, EBN and Gasunie announced plans to develop Aramus a major CCS hub in the Netherlands. Proposals are emerging for a project named Dartagorn to develop CO₂ infrastructure in the Dunkirk region, enabling export of CO₂ to the Netherlands for permanent storage.

The UK government set an ambitious target for a 68 per cent reduction in GHG emissions by the end of 2030. It published a ten-point plan for a green industrial revolution, outlining its intention to establish CCUS in two industrial clusters by the mid-2020s, with four such sites by 2030, capturing in excess of 10 Mtpa of CO₂. To enable this, the government also announced a £1 billion CCS infrastructure fund. The UK Government outlined its intention to establish four CCUS industrial clusters by 2030, capturing 10 Mtpa of CO₂. Plans to build Europe’s first large-scale direct air capture facility in Scotland were unveiled. The Dreamcatcher project will use nearby renewable energy and CCS infrastructure to capture 0.5 – 1 Mt of atmospheric CO₂ each year.

The Northern Lights Joint Venture, which will manage the transport and storage facility, is in discussions with potential customers representing 48 Mtpa of CO₂ – more than the current annual storage worldwide. Construction is underway on the Norwegian project, Langskip.
Dr. Dominik von Achten
CEO, HeidelbergCement

HeidelbergCement will be the leader in the global cement industry on its transformation path towards climate neutrality. To support this goal, we rely on a combination of measures – most importantly, the increased use of alternative fuels, alternative secondary cementitious materials including recycled materials, and carbon capture and storage (CCS). Key for decarbonising our industry is to find, apply and scale technical solutions for carbon capture and storage (CCS). Key for decarbonising our industry is to find, apply and scale technical solutions for carbon capture and storage (CCS).

CO2 REMOVAL
An increasing number of CO2 removal projects are in development across Europe:

- The Stockholm Exergy KVV8 facility is Europe’s largest biomass-based combined heat and power plant. A proposed BECCS project at this facility will remove up to 800,000 tonnes of CO2 from the atmosphere each year.
- In Denmark, Orsted, Microsoft and Aker Carbon Capture are collaborating to examine BECCS deployment at various biomass fired power stations.
- The proposed BECCS project at Drax power station in Yorkshire, the UK’s largest, continues to progress. In June, Drax announced its collaboration with Mitsui Heavy Industries to capture CO2 at the plant. Reflecting its importance in national climate strategies, Drax also announced a strategic collaboration with Bec心态, exploring the construction of BECCS plants globally.
- Plans to build Europe’s first large scale DAC facility were unveiled by Storegga and Carbon Engineering, in mid-2021. Scotland-based Dreamcatcher will take advantage of abundant renewable energy and anticipated CCS infrastructure nearby, capturing between 500,000 and one million tonnes of atmospheric CO2 each year.

WASTE TO ENERGY (WtE)
Adding CCS to WtE plants has the potential to make waste a zero or even negative emissions energy source, depending on the origin of the wastes utilised. Recognising this potential, a number of CCS projects involving such plants have emerged across Europe.

- The Amager Resource Center (ARC) in Copenhagen is potentially Denmark’s first CCS project. A pilot funded by the Energetik og Forskningsfondet’s demonstration program is currently operating. It is hoped that a full-scale facility capturing 500,000 tonnes of CO2 a year will be operational by 2025, making a substantial contribution to Copenhagen’s ambition of becoming the world’s first carbon neutral capital.
- In the UK, SUEZ is developing a modular system to capture CO2 from WtE plants. A demonstration project at Biggins is also underway. For example in Switzerland, where many of the largest point emission sources are WtE plants, a study looking at applying CCS to the KVA Linth plant.

TRANSPORT AND STORAGE
With a growing appetite for capturing and sequestering CO2, comes increased need for transport and storage infrastructure. Reflecting this, European CO2 storage has rapidly evolved beyond the preserve of the world’s energy supermajors. Harbour Energy, Neptune Energy, MOL and Independent Oil and Gas are just some of the companies publicly expressing interest in using European assets for CO2 storage.

EUROPEAN IMPLEMENTATION

As CCS projects adopt the network model, unit costs and risk are reduced. Many networks in development are examining the inclusion of CO2 shipping to broaden their reach, and there is growing recognition of the role regional port facilities play. Major CCS projects such as AntwerpSpP, Cifracap and Aramis are already being developed around major European ports.

CCS’s future looks likely to involve international networks spanning multiple industrial clusters and storage sites.

POLICY
European Union
The EU plans to funnel significant funds through EU banks and markets to achieve its climate ambitions. The EU Taxonomy clarifies which economic activities contribute to climate change mitigation and adaptation. This science-based tool recognises CCS, thereby providing access to European Green Bonds.

In July, the EU’s ‘Fit for 55’ legislative proposals were introduced, outlining changes relevant to CCS. Central to the package were modifications to the EU’s emissions trading scheme (ETS) representing 40 per cent of EU emissions. Changes would:

- increase the annual reduction rate of allowances to achieve the EU’s new 2030 target
- recognise CO2 is transported not only by pipelines, and cover all means of CO2 transport
- double the size of the innovation fund (see below)
- add a new carbon border adjustment mechanism to put a carbon price on imports of targeted products, such as steel and cement, to avoid ‘carbon leakage’.

Negotiations are ongoing, and the legislation should be finalised over the next few years. In the last year, the allowance price reached an all-time high. With greater national ambition and policy support, plus more awareness of climate risk amongst investors, hard to abate industries throughout Europe are increasingly exploring CCS.

At the time of writing, the first call for projects under the EU’s innovation fund is nearing completion with CCS projects, including Fortum Oslo Varme, reaching final stages. The second call for large-scale projects will be launched in October with a larger budget and a faster single stage application process (see Figure 14).

FIGURE 13 EU PRICE ALLOWANCES DIAGRAM

As CCS projects adopt the network model, unit costs and risk are reduced. Many networks in development are examining the inclusion of CO2 shipping to broaden their reach, and there is growing recognition of the role regional port facilities play.

Major CCS projects such as AntwerpSpP, Cifracap and Aramis are already being developed around major European ports.

CCS’s future looks likely to involve international networks spanning multiple industrial clusters and storage sites.

POLICY
European Union
The EU plans to funnel significant funds through EU banks and markets to achieve its climate ambitions. The EU Taxonomy clarifies which economic activities contribute to climate change mitigation and adaptation. This science-based tool recognises CCS, thereby providing access to European Green Bonds.

In July, the EU’s ‘Fit for 55’ legislative proposals were introduced, outlining changes relevant to CCS. Central to the package were modifications to the EU’s emissions trading scheme (ETS) representing 40 per cent of EU emissions. Changes would:

- increase the annual reduction rate of allowances to achieve the EU’s new 2030 target
- recognise CO2 is transported not only by pipelines, and cover all means of CO2 transport
- double the size of the innovation fund (see below)
- add a new carbon border adjustment mechanism to put a carbon price on imports of targeted products, such as steel and cement, to avoid ‘carbon leakage’.

Negotiations are ongoing, and the legislation should be finalised over the next few years. In the last year, the allowance price reached an all-time high. With greater national ambition and policy support, plus more awareness of climate risk amongst investors, hard to abate industries throughout Europe are increasingly exploring CCS.

At the time of writing, the first call for projects under the EU’s innovation fund is nearing completion with CCS projects, including Fortum Oslo Varme, reaching final stages. The second call for large-scale projects will be launched in October with a larger budget and a faster single stage application process (see Figure 14).
Norway

The Langskip project had its budget approved by the Storting (Norwegian Parliament) in 2021. The total cost estimate is NOK 26.1 billion (US$2.84 billion), comprised of a NOK 17.1 billion ($US1.83 billion) investment and NOK 8 billion ($US910 million) in operating costs over ten years. The state’s share of costs is estimated to be NOK 16.8 billion ($US1.9 billion).

State aid for the proposed capture plant at the Portum Oslo Varma WTE plant is limited to a maximum of NOK two billion in investment, and one billion in operating expenses. Sufficient additional funding is needed from the EU and other sources.

Denmark

In February, the Danish Council on Climate Change recommended its government develop a national CCS strategy as soon as possible. Denmark submitted its recovery and resilience plan to the EU in June. It details a subsidy scheme to support the development and demonstration of CO₂ storage sites for Denmark.

Germany

In a landmark case during April, Germany’s highest court ruled the Government’s climate legislation insufficient. Subsequently the Federal Government will make binding a reduction of 55 per cent of greenhouse gases by 2030, and net by 2045. With its Climate Action Programme 2030 the Federal Government has agreed to the funding program ‘CO₂-Vermeidung und -Nutzung in Grundstoffindustrien’ (use and avoidance of CO₂ in primary industries). This program supports the use of CCS technologies in industry as well as the more rapid and comprehensive establishment of CCUS process chains.

In 2019 CO₂ emissions from industry were 188 Mtpa. The 2030 targets require industrial emissions to drop to 140 Mtpa. Germany is both the largest steel and cement manufacturer in the EU.

EUROPEAN REGULATORY DEVELOPMENTS

CCS-specific amendments to the 1996 London Protocol, an international marine agreement that governs the dumping of waste in the marine environment, have been important in developing wider legal and regulatory support for the technology. The original amendment to the Protocol, agreed by the Parties in 2006, removed a significant international barrier to deployment and provided one of the first examples of a regulatory regime for CO₂ storage.

Another amendment in 2009 – to address the ban on transboundary movement of CO₂ for geological storage – resulted in a stalemate, with an insufficient number of Parties to enable it to take force. However, at the fourteenth Meeting of Contracting Parties in October 2019, agreement was reached and provisional application allowed. While this agreement effectively enables proponents wishing to transport CO₂ across international boundaries to proceed, there are further issues to consider:

- a declaration of provisional application and notification of any arrangements or agreements, must be provided to the International Maritime Organisation (IMO)
- standards prescribed by the Protocol must be met
- the focus for projects that include a transboundary element, will inevitably shift back to national implementation. National regulators and policymakers will be required to support projects by putting in-place necessary agreements and notifying the IMO.

Expediting this process, particularly in jurisdictions where projects are in the advanced stages, such as Europe, will now be a near-term priority.

The cluster sequencing process and further guidance regarding business models were published in May. Phase one of the cluster sequencing process will identify and sequence CCUS clusters, suited to deployment in the mid-2020s. These will have the first opportunity to negotiate support from the government’s CCUS program, including the £1 billion Infrastructure fund.

Final investment decisions are anticipated in early 2022. A sophisticated set of complementary CCUS business models has been developed. Transport and storage will be enabled through a regulated scheme. Separate models have been outlined for the reward of capturing CO₂ from power, the dispatchable power agreement and industrial carbon capture, taking into account the unique characteristics of each.

3.0 REGIONAL OVERVIEWS

3.3 EUROPE AND NEARBY REGIONS

[FIGURE 15 PORTHOS MAP]

Porthos Case Study

The Dutch Government’s Climate agreement – the Klimaatakkoord – outlines the aim to reduce GHG emissions 49 per cent by 2030, and 95 per cent by 2050, from 1990 levels. The Klimaatakkoord sets sector specific targets, including a required reduction from Dutch industry of 14.3 Mtpa by 2030. The Klimaatakkoord, and associated policy, allows up to 7.2 Mtpa to be mitigated through CCS.

The Port of Rotterdam, Europe’s biggest, is working with business and government to deliver important decarbonisation initiatives. The Port of Rotterdam CO₂ transport hub and offshore storage project, Porthos, is expected to be the first large scale CCS project in an EU member state. A partnership between the Port of Rotterdam, Gasunie and EBN, Porthos is ideally located to:

- capture CO₂ from industry in the port
- transport it via pipeline
- store it deep underground in depleted offshore gas reservoirs.

Porthos received a major boost during June when the Dutch Government confirmed allocation of the SDE++ subsidy. Competitively awarded, SDE++ is funded by a surcharge on energy consumption and bridges the gap between the cost of EU ETS allowances and decarbonisation technologies. Porthos’ initial emission sources – facilities operated by Shell, ExxonMobil, Air Liquide and Air Products – received SDE++.

Notably in the first call the successful CCS projects, all associated with Porthos, represented the lowest cost means of decarbonisation. These subsidies, valued at around €2.123 billion and granted over a 15 year period, will enable storage of 2.34 Mtpa, the equivalent of €60 a tonne. CCS projects represented around 40 per cent of the overall SDE++ budget, but 70 per cent of CO₂ reductions enabled through the subsidies.

There are a number of factors likely to further enhance the value of the Porthos project:

- proposed onshore infrastructure has been over sized and is capable of handling 10 Mtpa. The CO₂Transports, an EU common interest project, is working on how best to connect Porthos to the North Sea Port and Port of Antwerp where the Carbon Connect Delta and AntwerpCC consortiums are developing local industrial carbon capture clusters
- with hydrogen set to play a key role in decarbonising the Netherlands (and more broadly Europe), there are plans to build an open access hydrogen pipeline through the port area – projects like H-Vision will position Rotterdam as a key European hydrogen hub
- as EU emissions allowances get more expensive, the SDE++ scheme’s contribution will reduce – at the same time, demand to store CO₂ is expected to rise.

With the business case for the Porthos project established, efforts are focused on finalising permits so a final investment decision can be made in early 2022. Construction will begin shortly thereafter with operation anticipated in 2024.

PORTHOS CASE STUDY

THOUGHTS AND A GROWING PART OF

ENERGY DISCUSSIONS IN Russia

Driven by a handful of companies, CCS is a growing part of energy discussions in Russia:

- Early in the year, Novatek indicated plans to capture carbon at its Yamal LNG facilities.
- During June, Novatek and Russian steelmaker PAO Severstal announced the signing of a memorandum of co-operation to develop alternative energy and GHG emissions reduction technologies. The parties will consider a joint pilot project to produce blue hydrogen from natural gas, using CCS.
- In June, Russian Energy giant Gazprom Neft established an agreement with Shell to explore the possibility of deploying CCS at their joint ventures in Russia. Gazprom Neft also indicated the companies will discuss using CCS in blue hydrogen production.

Africa

Many African countries face the challenging task of balancing increased energy access with decarbonisation and economic growth. Carbon capture has been slow to progress, but there are signs of projects emerging. For example, a project is currently being studied by ENI in Libya. Growing expectations of a global market for low carbon hydrogen are driving interest in blue hydrogen from oil and gas producing countries like Mozambique, Angola and Nigeria. Such countries are hopeful that the resources their economies depend on can be used for blue hydrogen production and thereby avoid becoming stranded assets as the world shifts to low carbon pathways.

NEARBY REGIONS

FIGURE 15 PORTHOS MAP

[Diagram of Port of Rotterdam, including facilities and infrastructure.]

UK

The UK government set an ambitious target for a 68 per cent reduction in GHG emissions by the end of 2030. It published a ten-point plan for a green industrial revolution, outlining its intention to establish CCS in two industrial clusters by the mid-2020s, with four such sites by 2030, capturing up to 10 Mtpa of CO₂. To enable this, the government also announced a £1 billion CCUS infrastructure fund.
Three facilities in the United Arab Emirates and Saudi Arabia already account for about 10% of global CO₂ captured each year, about 3.7 Mtpa. Europe accounts for just four per cent. The GCC region is poised for a significant take-off in CCS activity over the next decade. Pressure for that growth arises from several sources:

- intensifying global decarbonisation commitments codified in the National Determined Contribution (NDC) Registry maintained by the United Nations Framework Convention on Climate Change
- increasing regional action on climate change includes material increases in the contribution of renewables and CCS, especially for fossil fuel generation to domestic energy sectors
- demand for CO₂ for use in local EOR operations forecast to grow at least fivefold to 2030
- a desire by both Saudi Aramco and ADNOC to continue reducing their carbon footprint for oil and gas production – already the lowest in the world
- supporting growth in the production, and export, of low-carbon hydrogen by partnering natural gas reformation processes with CCS
- building a broad base of ‘clean and competitive’ heavy industry to underpin industrial diversification plans
- recent G20 endorsement of Saudi Arabia’s promotion of the Circular Carbon Economy – it provides a central role for CCS – as developed by King Abdullah Petroleum Studies and Research Center.

The concentration of CO₂ emission sources in the GCC region is also conducive to CCS. As Figure 16 shows, more of 2025’s estimated CO₂ emissions will come from power generation, rather than oil and gas operations, in four of five countries. As well as reducing the number of CCS facilities needed to decarbonise industry, the geographical concentration of major emitters along the Gulf coast could support the building of CO₂ infrastructure networks, reducing overall costs and providing incentives for new CCS projects.

The significance of the GCC region in the context of CCS deployment is often overlooked, both in terms of current scale and short-term prospects. Three existing CCS facilities in the United Arab Emirates (UAE) and Saudi Arabia already account for around 10 per cent of global CO₂ captured each year. Europe accounts for just four per cent. The GCC region is poised for a significant take-off in CCS activity over the next decade. Pressure for that growth arises from several sources:

- intensifying global decarbonisation commitments codified in the National Determined Contribution (NDC) Registry maintained by the United Nations Framework Convention on Climate Change
- increasing regional action on climate change includes material increases in the contribution of renewables and CCS, especially for fossil fuel generation to domestic energy sectors
- demand for CO₂ for use in local EOR operations forecast to grow at least fivefold to 2030
- a desire by both Saudi Aramco and ADNOC to continue reducing their carbon footprint for oil and gas production – already the lowest in the world
- supporting growth in the production, and export, of low-carbon hydrogen by partnering natural gas reformation processes with CCS
- building a broad base of ‘clean and competitive’ heavy industry to underpin industrial diversification plans
- recent G20 endorsement of Saudi Arabia’s promotion of the Circular Carbon Economy – it provides a central role for CCS – as developed by King Abdullah Petroleum Studies and Research Center.

The concentration of CO₂ emission sources in the GCC region is also conducive to CCS. As Figure 16 shows, more of 2025’s estimated CO₂ emissions will come from power generation, rather than oil and gas operations, in four of five countries. As well as reducing the number of CCS facilities needed to decarbonise industry, the geographical concentration of major emitters along the Gulf coast could support the building of CO₂ infrastructure networks, reducing overall costs and providing incentives for new CCS projects.

The GCC region is poised for a significant take-off in CCS activity over the next decade.

GCC STATES POISED FOR SIGNIFICANT CCS ACTIVITY

In late 2020, the leaders of the G20 endorsed the concept of the ‘circular carbon economy’ developed by Saudi Arabia’s King Abdullah Petroleum Studies and Research Center, which recognises and values all forms of CO₂ mitigation.
While the consensus on action to address climate change is coalescing around a net zero approach, there is little agreement on which of the many possible net zero pathways to take. Some advocate for a minimal role for hydrocarbons and others suggest a much broader approach that embraces all low-carbon options. In our modeling of net zero pathways, significant deployment of CCUS is critical not only for lowering costs but for providing some measure of assurance in achieving climate goals. Without CCUS, the path to net zero relies on a narrow set of technologies directed largely at electrification with renewables. CCUS enables continued use of hydrocarbons in the electricity sector as well as in industrial applications, and encourages blue hydrogen and direct air capture (DAC), for example, all of which could lower costs significantly. The 4Rs pathway to net zero unlocks all reduce, reuse, recycle, and remove options of the Circular Carbon Economy.

“IN OUR MODELING OF NET ZERO PATHWAYS, SIGNIFICANT DEPLOYMENT OF CCUS IS CRITICAL NOT ONLY FOR LOWERING COSTS BUT FOR PROVIDING SOME MEASURE OF ASSURANCE IN ACHIEVING CLIMATE GOALS.”

Adam Sieminski

Assembling long-term projections for CCS is fraught with difficulties. Quality analysis of CCS’s technical scope, however, gives an indication of the possibilities. Qamar Energy did an analysis for the GCC region, dividing the annual scope by main industry type (Figure 17). It is important to emphasise the CO₂ use/stored line is an indicator of absolute scope or potential – not a forecast. It is useful for deriving some indicative volumes of captured CO₂ if the region realised various levels of CCS ambition.

Based on a provisional total of 15–20 Mtpa CO₂ being captured across the GCC region by 2030, the figure represents around 20 per cent of the technical scope in that same year. Maintaining that level of CCS project delivery suggests the region reaching 30 Mtpa by 2035. If efforts to deploy CCS intensify, as trends suggest, assuming a simple doubling of delivery rates (but still only 40 per cent of technical scope) CO₂ capture might even reach 60 Mtpa by 2035. That would align with the rate of regional CCS activity included in the IEA’s Sustainable Development Scenario (SDS). It seems achievable.

POLICY

The trend of CCS growth in the GCC region is less dependent on policy incentives than other parts of the world. Climate policies are relatively absent, with government attention on the strategic, and increasingly the environmental, case for decarbonisation, rather than on policy development. The economic case for capturing industrial CO₂ is mostly driven by its EOR value. There is still a short-term need for legislation and/or regulation frameworks though, to enable and encourage more CCS activity across the region. Robust frameworks and supportive policy could bolster growth.

Emission Performance Standards (EPSs) appear to be a more likely pathway to increased CCS than tax-based incentives, like a carbon tax or ETS. EPSs would actively complement the regional industrial strategy to develop low carbon heavy industry as a form of diversification. For example, EPSs – at least in Oman and the UAE – should ensure that permits for new coal plants are consistent with commitments to low-carbon energy systems. The emergence of CCS-supportive policies in the next two to five years could signal a trend towards the upper band of effort seen in Figure 17. The relatively new CCS policy opportunity for national governments to participate in CO₂ infrastructure developments to catalyse CO₂ capture investments could have special relevance in the GCC region. The heavy concentration of large emitters along the Persian Gulf coast, and their proximity to EOR users, is good news for the CCS hub and cluster model. There is potential value for all GCC states and it could tempt cross-border collaboration. Such developments should happen, again in the next two to five years, if the region is to reach the upside range of CCS growth rates.

The strength and breadth of drivers for growth in CCS underwrite the region’s bullish faith in CCS prospects for the next 10–15 years. The launch of a new Global CCS Institute office in Abu Dhabi is a demonstration of this confidence.

FIGURE 17 ESTIMATED TECHNICAL SCOPE FOR CCS ACROSS GCC REGION TO 2035, MILLION TONNES OF CO₂ CAPTURED

SOURCE: Qamar energy, GCCSI webcast, 23 Feb 2021
4.0 PATHWAYS IN FOCUS

4.1 ENVIRONMENTAL, SOCIAL AND GOVERNANCE

4.1 ENVIRONMENTAL, SOCIAL AND GOVERNANCE

Interest in environmental, social and governance (ESG) related issues continues to grow quickly across the globe. Dedicated international action – such as adopting the UN’s Sustainable Development Goals (UN SDGs) and concluding the Paris Agreement – alongside developing and strengthening domestic climate policies and social and environmental protections, demonstrates this growing impetus. Environmental factors continue to rise in prominence within the consideration of ESG performance. In many instances, however, it is climate change that has become synonymous with these environmental considerations. This issue is now driving a steady increase in reporting and assessment activities.

THE IMPACT OF ESG FACTORS UPON A COMPANY

Companies are expected to closely scrutinise and report on ESG factors that are material to their core activities. How they address them is an increasingly significant consideration for investors, shareholders and the wider public. While many progressive companies aspire to adopt more altruistic and sustainable practices, change is also driven externally. The rise of socially conscious investment practices, the concept of the enlightened shareholder and increased public activism surrounding ESG, encourage progress. A business strategy that incorporates ESG can bring commercial benefits. Research suggests that corporate transparency around ESG is an important consideration for all sectors of the investment community – investors increasingly favour companies that proactively address it. Financials’ consideration of ESG performance and the cost of raising or accessing capital encourages companies to pay closer attention to the impact of their own activities. Research suggests there is an increasingly clear link between higher company performance on ESG and access to lower-cost capital.

The relationship between ESG and commercial performance is perhaps less certain. Commentators in some jurisdictions identify a link, while others remain hesitant.

A SHIFT TO MORE MANDATORY FORMS OF REPORTING

Voluntary reporting of progress against ESG factors is being replaced by more formal approaches, through policy and regulatory intervention, fear of financial risk, or the threat of litigation. In several jurisdictions, financial reporting obligations now include requirements around ESG disclosures and investment decisions.

In Australia, industry regulators – such as the Reserve Bank of Australia, the Australian Securities and Investment Commission and the Australian Prudential Regulation Authority – are emphasising that ESG, particularly climate change, must be included in directors’ decision-making and disclosure procedures. There is a clear expectation for a higher degree of disclosure within traditional reporting frameworks.

UK government and industry regulators have taken a similar approach. In November 2020, the government released a formal roadmap, setting out an indicative path towards mandatory climate-related reporting for companies and asset owners. These are aligned with the recommendations of the Taskforce on Climate-related Financial Disclosures (TCFD).

The traditional, more conservative, reporting methods long used by many large corporations, are being replaced with systems that seek to manage ESG risks and pro-actively address them.

CCS ACTIVITIES WITHIN CURRENT ESG SCHEMES

The role CCS might play in easing either the impacts of a company’s carbon dioxide-intensive activities, or the external pressures faced as a result of these, is largely unexplored. The Institute’s research suggests that, once CCS technology is accepted as a commercially viable form of mitigation, its ESG benefits will interest both investors and companies. Organisations with significant carbon exposure may adopt low-carbon technologies to both demonstrate their commitment to CO2 reduction and improve public and investor-led perception of their activities.

There has been little consideration of the impact of CCS on ESG assessments. Only a limited number of ratings models specifically include reference to CCS or acknowledge its possibilities. While potential CCS reductions are occasionally reported, their magnitude or the weight that should be attached to them, is mostly unchartered.

THE OUTLOOK

For companies seeking to support the technology’s more widespread deployment, the ESG landscape presents a high degree of uncertainty. Despite early awareness of CCS’s potential within investment and ratings communities, low levels of deployment and commercial investment over the past 10 years have resulted in scant consideration of the technology and little impact upon ESG ratings schemes. Still, many high-emitting industry sectors face increased pressure to consider CCS, or the ESG impacts of their activities under carbon-constrained scenarios.

Greater commercial-scale deployment of CCS, as witnessed in the past year, together with wider recognition of its role in supporting net zero objectives, will likely lead to improved exposure. However, emphasis upon including mitigation activities within mandatory reporting schemes and re-orientation of capital towards more sustainable investments, will likely drive companies and investors to consider CCS and other technologies. Ensuring that reporting methodologies and ESG assessment schemes fully capture CCS’s value is critical.

4.2 FINANCING CCS

THE NEED FOR CCS

Analysis by credible organisations like the International Energy Agency (IEA), the Intergovernmental Panel on Climate Change and others, identifies a significant role for CCS in meeting ambitious climate targets. One example is the IEA’s Sustainable Development Scenario (IEA-SDS) model (Figure 21). The IEA-SDS defies a pathway where 15 per cent of the world’s emissions reductions between now and 2050 are delivered by CCS. This equates to 2,000 large scale facilities being deployed by 2050 – around 100 facilities commissioned each year. The cost capital for this would be around US$ 650-1300 billion, depending on the rate at which CCS costs reduced with installed capacity. The pathway requires unprecedented levels of financing, mainly from the private sector where most of the world’s liquidity is locked up.

Climate change carries with it a set of unprecedented, high impact, high probability risks – referred to as climate risks. They include transition risks that arise because of government action. As governments implement policies to mitigate climate change – for example, emissions performance standards and carbon taxes – businesses with significant emissions face threats to their profitability. They logically take action to shelter themselves from transition risks. Financial organisations face similar pressures to reduce exposure. The aim to eventually align with the Paris Agreement – climate alignment – will be a key driver for private CCS investments.

With few exceptions, industry is not yet aligned with the Paris Agreement. Sectors like steel, cement, fertiliser, chemicals and energy are emissions-intensive and provide essential goods and services. They make up a large part of the global economy. Financiers seeking to mitigate climate transition risk can diversify from these essential industries, or stay with them and encourage more rapid climate alignment. In reality, a mix of both strategies is common, with some institutions choosing to support high emissions sectors through debt or equity investments. For example, Norway’s US$1 trillion Government Pension Fund Global and Japan’s US$1.36 trillion Government Pension Investment Fund are engaging with companies on climate change rather than exiting fossil fuel investments.

The need for climate alignment has helped catalyse green financial products and asset classes with lenders creating specialised forms of debt. A recent innovation is the rapidly growing sustainability linked loan (SLL) where an in-built mechanism generates a lower lending rate if the borrower achieves certain ESG targets and a higher one if they underperform. SLLs and similar financial products may eventually be leveraged by CCS projects to deliver on environmental targets.

TO ACHIEVE CLIMATE ALIGNMENT, A FINANCIAL INSTITUTION MIGHT CONSIDER...

1. UNDERSTAND CURRENT PORTFOLIO RELATED TO A 1°C PATHWAY
2. COMMIT TO TAKE THE STEPS NECESSARY TO MERGE ONTO THAT PATHWAY
3. ADJUST PORTFOLIO UNTIL CLIMATE-ALIGNED

“FINANCING CCS IS A CRITICAL COMPONENT OF EMISSIONS REDUCTIONS.”

Zoe Knight
Managing Director and Group Head, HSBC Centre of Sustainable Finance

Achieving a net zero future set out in the Paris Agreement will require mobilising finance to help the high climate impact companies of today transition to become the low carbon leaders of the future. For hard-to-abate sectors like cement, steel, shipping and aviation, CCS can be a cost-effective solution for widescale decarbonisation.

We have green bonds and green loans, but we need to create more transition-labelled financial products that enable more investment in the companies doing the hard work of decarbonising using CCS. Internationally, climate agencies, like the IPCC, agree that a transition to a net zero economy will require a large scale-up of CCS facilities. Consequently, financing CCS is a critical component of emissions reductions.

More information on ESG and its relation to CCS available in the Institute’s Thought Leadership report: Environmental, Social and Governance Assessments and CCS.
PROJECT FINANCE

From a business perspective, there are barriers to financing CCS projects. CCS projects are perceived as high-risk (driving up the cost of capital) and are capital intensive. Most funding therefore takes place on the balance sheets of large corporations – the corporate finance model. This means CCS investment risks are not reflected in the cost of capital, but lenders have full recourse to corporate assets. Smaller companies and those with constrained balance sheets can’t fund CCS facilities this way. They require project finance, which limits recourse to the one funded project, compounding risks and leading to higher cost debt and higher overall project costs. This can create a funding gap (Figure 19).

GOVERNMENTS CREATE AN ENABLING ENVIRONMENT FOR CCS INVESTMENTS

Governments have an important role in supporting CCS investments. They can provide direct financial support, such as capital grants, to reduce the commercial debt CCS projects need. Further, they can mandate specialist financiers – such as development banks, multilateral banks and export credit agencies – to support CCS investments. These specialist financiers can provide low-cost loans and insurance to fund the most high-risk components of CCS projects. Figure 20 illustrates a typical project finance structure that can apply to CCS investments.

4.3 CCS NETWORKS

An emerging trend is the development of CCS networks which aggregate CO2 from multiple sources. Networks offer economies of scale for individual CCS sites, by sharing larger infrastructure for CO2 liquefaction and port facilities; CO2 compression and pipelines. Figure 22 shows indicative pipeline costs in Australia (F23). After capture, CO2 can be transported as a gas (less than ~74 bar of pressure) or in the dense phase (above 74 bar). Estimated pipeline costs in Figure 22 (including all capital and operational expenditure) show that small flows of CO2 result in very high pipeline costs for each tonne. Once flows exceed ~0.25 Mtpa for the gas phase or around 1.0 Mtpa for the dense phase, most economies of scale have been exploited. Although pipeline costs vary by location, these trends apply everywhere. There is a clear incentive to minimise transport costs by centrally aggregating CO2 streams from multiple smaller capture plants. Where CO2 shipping is preferable (like in coastal locations with long offshore distances to storage), economies of scale enable lower costs for each tonne of shared CO2 liquefaction infrastructure and for port facilities loading and unloading liquid CO2.

Shared storage facilities also reduce costs. Drilling wells is an expensive process with significant fixed costs that vary only a little, depending on the diameter of the well and the associated CO2 injection capacity. It makes sense to spread investment over larger tonnages of CO2, sharing storage costs across multiple sources. Shared transport and storage infrastructure makes smaller scale CO2 capture projects (~0.2 Mtpa or smaller) viable. In the United States in 2019, approximately 298 Mtpa of CO2 was produced by four, 4,931 individual facilities (2) each emitting under 200,000 tonnes of CO2 a year. They represented nearly 16 per cent of US industrial emissions.

In the United States in 2019, approximately 298 Mtpa of CO2 was produced by four, 4,931 individual facilities (2) each emitting under 200,000 tonnes of CO2 a year. They represented nearly 16 per cent of US industrial emissions.

Cross-border transport networks enable nations lacking good local CO2 storage resources to undertake CCS projects. For example, industrial regions such as Dunkirk, France; Ghent, Belgium; and Gothenberg, Sweden; are planning to aggregate their industrial CO2 streams and liquefy and ship it for storage in the North Sea, including cross-chain risks by providing capture and storage operators with multiple customers or suppliers. Regional colocation of industries and firms creates an industrial ecosystem that benefits all. CCS networks reduce counterparty or cross chain risks by providing capture and storage operators

GOVERNMENTS CREATE AN ENABLING ENVIRONMENT FOR CCS INVESTMENTS

Governments have an important role in supporting CCS investments. They can provide direct financial support, such as capital grants, to reduce the commercial debt CCS projects need. Further, they can mandate specialist financiers – such as development banks, multilateral banks and export credit agencies – to support CCS investments. These specialist financiers can provide low-cost loans and insurance to fund the most high-risk components of CCS projects. Figure 20 illustrates a typical project finance structure that can apply to CCS investments.

4.3 CCS NETWORKS

An emerging trend is the development of CCS networks which aggregate CO2 from multiple sources. Networks offer economies of scale for individual CCS sites, by sharing larger infrastructure for CO2 liquefaction and port facilities; CO2 compression and pipelines. Figure 22 shows indicative pipeline costs in Australia (F23). After capture, CO2 can be transported as a gas (less than ~74 bar of pressure) or in the dense phase (above 74 bar). Estimated pipeline costs in Figure 22 (including all capital and operational expenditure) show that small flows of CO2 result in very high pipeline costs for each tonne. Once flows exceed ~0.25 Mtpa for the gas phase or around 1.0 Mtpa for the dense phase, most economies of scale have been exploited. Although pipeline costs vary by location, these trends apply everywhere. There is a clear incentive to minimise transport costs by centrally aggregating CO2 streams from multiple smaller capture plants. Where CO2 shipping is preferable (like in coastal locations with long offshore distances to storage), economies of scale enable lower costs for each tonne of shared CO2 liquefaction infrastructure and for port facilities loading and unloading liquid CO2.

Shared storage facilities also reduce costs. Drilling wells is an expensive process with significant fixed costs that vary only a little, depending on the diameter of the well and the associated CO2 injection capacity. It makes sense to spread investment over larger tonnages of CO2, sharing storage costs across multiple sources. Shared transport and storage infrastructure makes smaller scale CO2 capture projects (~0.2 Mtpa or smaller) viable. In the United States in 2019, approximately 298 Mtpa of CO2 was produced by four, 4,931 individual facilities (2) each emitting under 200,000 tonnes of CO2 a year. They represented nearly 16 per cent of US industrial emissions. Cross-border transport networks enable nations lacking good local CO2 storage resources to undertake CCS projects. For example, industrial regions such as Dunkirk, France; Ghent, Belgium; and Gothenberg, Sweden; are planning to aggregate their industrial CO2 streams and liquefy and ship it for storage in the North Sea, including cross-chain risks by providing capture and storage operators with multiple customers or suppliers. Regional colocation of industries and firms creates an industrial ecosystem that benefits all. CCS networks reduce counterparty or cross chain risks by providing capture and storage operators with multiple customers or suppliers. CCS networks reduce cross-chain risk.

The CCS value chain requires a broad range of skills and knowledge. In most cases – natural gas separation being an exception – the CO2 capture plant operator will not have the competencies needed for handling and transporting dense phase gases, or appraising and operating geological storage. Similarly, a host plant operator such as a cement manufacturer, will be unlikely to have expertise in CO2 capture, transport or geological storage. In most cases, a maximum efficiency value chain will involve multiple parties, each specialising in one component. A CCS project requires coordination of multiple investment decisions, all with long lead times.

Once a CCS project is operating, interdependency along value chain actors remains. The storage operator relies upon the capture operator to supply CO2 and vice versa. If any element of the chain fails, the whole chain fails. This creates cross-chain risk. In general, regional colocation of industries and firms creates an industrial ecosystem that benefits all. CCS networks reduce counterparty or cross chain risks by providing capture and storage operators with multiple customers or suppliers.

Cross-border transport networks enable nations lacking good local CO2 storage resources to undertake CCS projects. For example, industrial regions such as Dunkirk, France; Ghent, Belgium; and Gothenberg, Sweden; are planning to aggregate their industrial CO2 streams and liquefy and ship it for storage in the North Sea, including cross-chain risks by providing capture and storage operators with multiple customers or suppliers. Regional colocation of industries and firms creates an industrial ecosystem that benefits all. CCS networks reduce counterparty or cross chain risks by providing capture and storage operators with multiple customers or suppliers.
4.0 PATHWAYS IN FOCUS
4.4 INDUSTRY

CCS is an essential decarbonisation option for the world’s industrial businesses. Key emissions intensive sectors such as chemicals, iron and steel, and cement are sometimes referred to as ‘hard to abate’. These sectors cannot make their products without producing CO₂. Switching to renewable energy or focusing on energy efficiency is unable to solve a substantial fraction of their emissions.

The global cement sector, which emits approximately 4.1 billion tonnes of CO₂ each year (3), has a considerable abatement challenge. Although exploring options to substitute fossil fuel use and be more energy efficient, the sector must still contend with CO₂ produced by its core calcination reaction. Limestone (CaCO₃) is split into calcium oxide (CaO) and CO₂. For every tonne of calcium oxide (the primary constituent of cement), 0.785 tonnes of CO₂ will be produced, regardless of what fuel or power sources the sector uses. This process CO₂ alone represents over 2 billion tonnes a year of CO₂ emissions. For this CO₂, CCS is an essential option.

Post-combustion style technologies may capture the mixed combustion CO₂ and process it. This approach is being developed at HeidelbergCement’s Norcem Brevik plant in Norway, a 0.4 Mtpa capture facility, currently under construction (9). Aker Carbon Capture has been chosen as the Engineer, Procure, Construct contractor and technology provider for this project (5). HeidelbergCement recently announced a larger ‘carbon neutral’ 1.8 Mtpa project at the Slite cement plant in Sweden (6). The Slite development will be significant – not only for its scale but also for its intention to create the world’s first carbon neutral cement facility.

An alternative CCS pathway for cement is to separate the calcination CO₂ by heating the raw feedstock and keeping it separate from combustion gases. This is seen in the LEILAC 2 demonstration project in Belgium, which incorporates Calix’s new calcination technology. High purity process CO₂ is captured as part of the calcination process, ready for compression and transport.

Global iron and steelmaking is another large contributor to global CO₂ emissions by heating the raw feedstock and keeping it separate from combustion gases. This is seen in the LEILAC 2 demonstration project in Belgium, which incorporates Calix’s new calcination technology. High purity process CO₂ is captured as part of the calcination process, ready for compression and transport.

They are also unsuitable for retrofitting.

Carbon Capture, Utilisation and Storage technologies (CCUS) are a crucial element in the decarbonisation of industry. All efforts towards carbon neutrality will only succeed with an open, transparent and unbiased debate on the most effective technologies for avoiding CO₂ emissions. The roll-out of renewable energies and the improvement of energy efficiency alone will not be sufficient to meet this challenge.

Especially for abating industrial process emissions, economically viable alternatives to CCUS are not yet available. In view of both energy-intensive industries and the ambitious climate targets in Germany, we need to have a serious discussion about CCUS as an important component of the climate protection toolkit.

CCUS will also be an important stepping stone on the path to net zero emissions as part of the politically desired development of a hydrogen economy. It is clear that the use of carbon avoidance technologies is inevitably connected with their social and political acceptance. Acceptance requires as a minimum condition, education about facts.

“CARBON CAPTURE, UTILISATION AND STORAGE TECHNOLOGIES (CCUS) ARE A CRUCIAL ELEMENT IN THE DECARBONISATION OF INDUSTRY.”

4.0 PATHWAYS IN FOCUS
4.5 HYDROGEN

ROLE OF CLEAN HYDROGEN

Clean hydrogen can be produced in three ways:

- from fossil fuels with CCS (blue hydrogen)
- from biomass
- from electrolyzers powered by renewable electricity (green hydrogen) or nuclear power

It could deliver multi gigatonnes (Gt) of abatement annually, when used in various industries, transport and stationary energy. The Hydrogen Council estimates that hydrogen demand could exceed 500 Mt by 2050, delivering up to 8 Gt a year of abatement (8).

Achieving 6 Gtpa of abatement, requires that demand for, and supply of, clean hydrogen increase. Two factors critical to realising this opportunity, are scale and cost:

- production scale must rise from approximately 1 Mtpa in 2020 to over 500 Mtpa by 2050
- production costs must be low enough to compete with fossil fuels – taking into account the current policy environment – to stimulate demand.

Clean H₂ can be produced at industrial scale from a variety of sources, as illustrated in FIGURE 24. The diagram shows how a portfolio of different hydrogen production pathways can be combined to reach net zero emissions by 2050.

Hydrogen被认为是能源转型的关键技术，因为它可以用于多种应用，包括制造业、交通和 stationary energy。氢气的生产可以分为三种主要方式：

1. 从化石燃料中生产，并通过碳捕获和储存（CCS）来实现（蓝色氢）。
2. 从生物质中生产。
3. 由可再生能源驱动的电解水产生的绿色氢气，或者核能。

图24显示了到2050年，如何通过组合不同类型的氢气生产路径来实现净零排放的目标。
SCALING UP PRODUCTION OF CLEAN HYDROGEN

Blue hydrogen is very well positioned for rapid scale-up, having been produced in commercial quantities (hundreds to over 1,000 tonnes per day) in each facility since 1982. In comparison, the world’s largest electrolysis hydrogen production facility, powered by wind or solar energy at Fukushima, Japan, can produce – assuming sufficient battery storage – around 2.4 tonnes a day of green hydrogen.

There are currently seven commercial facilities producing blue hydrogen. Their total combined production capacity is 1.3 to 1.5 Mt, depending on assumed availability.

To rapidly scale up clean hydrogen production, certain resources are essential. The best clean hydrogen production method in a specific location is determined by available land, water, electricity, coal, gas and pore space for CO₂ storage.

- Clean hydrogen using electrolysis, or coal or gas with CCS, requires similar amounts of water – around 6 kg/kWh for gas plus CCS and 9 kg/kWh for coal plus CCS or electrolysis (11,12).
- Electrolysis has extremely high electricity demands of 55 kWh/kgH₂ (13) compared to 1.91 kWh/kgH₂ for gas plus CCS and 3.48 kWh/kgH₂ for coal plus CCS – including electricity to produce the gas or coal (8,13).
- Renewable hydrogen requires sufficient land to host the wind and/or solar photovoltaic (PV) generation capacity.
- Fossil hydrogen with CCS requires land for CO₂ pipelines and injection infrastructure. It also needs coal or gas, and pore space for the geological storage of CO₂.

RESOURCES REQUIRED FOR THE PRODUCTION OF 1.76 M t OF H₂ FROM COAL OR GAS WITH CCS AND ELECTROLYSIS POWERED BY RENEWABLE ELECTRICITY

- For green hydrogen, supporting infrastructure includes constructing renewable electricity generation capacity and where necessary, associated transmission lines.
- For blue hydrogen, supporting infrastructure includes CO₂ pipelines and the development of geological storage resources.

The capital cost of essential supporting infrastructure is estimated in Figure 28 for two extreme scenarios – producing 530 Mt of blue or green hydrogen (the potential 2050 demand estimated by the Hydrogen Council). Supporting 530 Mt of green hydrogen would cost over US$8,000 billion, compared to approximately US$300 billion for blue hydrogen. This covers pipelines, electricity generation and distribution (16).

There are many assumptions built into these cost estimates. While not definitive, they illustrate that the essential infrastructure required to support production of climate-relevant quantities of green hydrogen could cost 20 or 30 times more than the infrastructure required to support production of the same quantity of clean hydrogen using fossil fuels with CCS.
Excludes facilities that are operating or in construction. Includes facilities where blue hydrogen is an interim product or a final product.

In contrast to most CO₂ abatement technologies that reduce emissions from point sources, negative emissions technologies (NETs) withdraw CO₂ from the atmosphere, and securely store it. Two main classes of NETs exist: those based on photosynthesis (biomass energy with CCS – BECCS) and direct removal of CO₂ from the atmosphere (Direct Air CO₂ Capture and Storage – DACCS).

In order to meet global net zero targets, a large fraction of mitigation projects will be about reducing emissions from existing sources. However, some emissions will still be released into the atmosphere, even if the emissions rates are much smaller than today. For a true net zero outcome, NETs will be essential to balance out residual, negative emissions. NETs will also be required well beyond net zero, to further draw down atmospheric CO₂ over the long term, reducing the impacts of climate change.

Unlike forestry-based CO₂ removal projects, BECCS and DACCS can provide long term security for stored CO₂, with no vulnerability to weather, fire, pest and disease. DACCS offers scalability and is not limited by the availability of arable land. Natural solutions will play an essential role in our response to climate change, but are unlikely by themselves to sufficiently deliver the negative emissions the world needs to meet net zero targets.

Bioethanol is an excellent, low-cost opportunity for BECCS. High purity CO₂ from fermentation requires only dehydration and concentration before gasification and storage. As this CO₂ recently came from the atmosphere, its capture and storage results in negative emissions. The US Summit Carbon Solutions bioethanol CO₂ network project will transport CO₂ from 31 individual bioethanol plants to a gathering economical shared transport and storage. With a capacity of just under 8 Mtpa, it will be the world’s single largest BECCS network.

The waste to energy (WtE) sector is another prime opportunity for reducing emissions. WtE plants typically combust sorted municipal solid waste. With a fuel that typically contains over 50 per cent biomass (such as food scraps and green waste), a plant that captures greater than the non-biogenic fraction of CO₂ will result in negative emissions. One advanced project is Fortum Oslo Varme CCS at their WtE plant in Klemetsrud, Norway. This is planned to capture 0.4 Mtpa of CO₂, helping significantly lower emissions from the city of Oslo. Storage will be in the Northern Lights project (part of the Langskip network) west of Norway in the North Sea.

Biomass power generation is another opportunity for BECCS. The formerly coal-fired Drax power station in England has been converted to use processed biomass fuel. In June 2021, Drax signed a deal with Mitsubishi Heavy Industries to use their KS-21 capture technology, with a capacity of 4.5 Mtpa, this will be the world’s single largest bioenergy capture plant.

DACCS

Direct air capture projects are in an earlier stage of development. They involve direct removal of CO₂ from the atmosphere, without photosynthesis. Atmospheric CO₂ is very dilute and much harder to capture than industrial CO₂. Comparatively large volumes of air must be handled for each tonne captured. Larger capture equipment is needed, so projects cost more than industrial CCS applications with the same capacity. The thermodynamics of gas separation means the more dilute CO₂ also requires more energy to capture. DACCS projects are under development around the world:

- DAC technology firm Carbon Engineering, in collaboration with the Saskatchewan Research Council, has started a pilot project in Canada to develop a direct air capture facility.
- The Carbfix project is injecting CO₂ into a basalt formation underground. The Carbfix storage approach is also low cost compared to other locations – water flowing through an existing geothermal power plant will dissolve CO₂ before it is injected into a basalt formation underground.

Mineral carbonation

Mineral carbonation is a geological process in which CO₂ reacts with rocks to form more stable mineral products known as carbonates. Basalts are prevalent globally (20) and have favourable morphology and mineralogy for mineral carbonation storage. These and many other CO₂ reactive rocks are conveniently located in regions where conventional CO₂ storage (for example, depleted oil and gas fields) is generally absent.

Mineral carbonation is currently employed for carbon storage in two different ways:

- Exposing mafic or ultramafic rocks (those rich in calcium, magnesium, and iron, such as basalt) to the atmosphere, or CO₂-saturated air, can result in mineral carbonation. This process has been used to remediate mining waste and produce construction materials. For example, CO₂-rich fume gas has been injected into processed kimberlite mine waste above ground (known as ex situ) during field trials at a Canadian mine (21).
- CO₂ is dissolved in water and then pumped, via injection wells, into porous and permeable subsurface basalt formations – Carfit’s model. (See 4.6 DACCS). The Carfit CCS Facility in Iceland has been storing CO₂ using mineral carbonation at this scale since 2014. The project permanently stores CO₂ in basalt rock formed by volcanic flows. Around 25 tonnes of water is required for each tonne of CO₂. The Carfit project is injecting 12,000 tonnes annually into shallow basals (400–800 m depth) through 12 wells. Analysis from their pilot phase shows more than 95 per cent of CO₂ was mineralised within two years (22).

New research has demonstrated this water-intensive process may also be achieved with seawater – an abundant resource (23). A version of this method was applied in 2013 at the Walulla power plant in the US state of Washington (24). Here, 1,000 tonnes of supercritical CO₂ was directly injected into porous and permeable basalt – without using water as the carrier fluid. Mineralisation rates were also rapid, with 60 per cent of the injected CO₂ mineralising within two years (24).

The storage potential of mineral carbonation has been estimated at 100,000–250,000 GtCO₂ (22). This number incorporates all basaltic rocks, which constitute 70 per cent of the world’s ocean basins and five per cent of the Earth’s continents (22). The potential for carbon storage via mineral carbonation is significant but, like all forms of CO₂ storage, additional operational project-at-scale are required to support its use.

4.6 TECHNOLOGY-BASED CO₂ REMOVAL

In contrast to most CO₂ abatement technologies that reduce emissions from point sources, negative emissions technologies (NETs) withdraw CO₂ from the atmosphere and securely store it.

<table>
<thead>
<tr>
<th>FACILITY</th>
<th>COUNTRY</th>
<th>ANNOUNCED OPERATIONAL CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wabash Valley Resources Hydrogen Plant</td>
<td>United States</td>
<td>2022</td>
</tr>
<tr>
<td>Air Liquide Refinery Rotterdam</td>
<td>Netherlands</td>
<td>2024</td>
</tr>
<tr>
<td>Project Poikai Hydrogen Production</td>
<td>New Zealand</td>
<td>2024</td>
</tr>
<tr>
<td>Shell Refinery Rotterdam</td>
<td>Netherlands</td>
<td>2024</td>
</tr>
<tr>
<td>ExxonMobil Benelux Refinery</td>
<td>Netherlands</td>
<td>2024</td>
</tr>
<tr>
<td>Air Products Refinery Rotterdam</td>
<td>Netherlands</td>
<td>2024</td>
</tr>
<tr>
<td>Acorn Hydrogen</td>
<td>United Kingdom</td>
<td>2025</td>
</tr>
<tr>
<td>Clean Energy Systems Carbon Negative Energy Plant - Central Valley</td>
<td>United States</td>
<td>2025</td>
</tr>
<tr>
<td>Pwem Refinery</td>
<td>Sweden</td>
<td>2025</td>
</tr>
<tr>
<td>Barents Blue Clean Ammonia with CCS</td>
<td>Norway</td>
<td>2025</td>
</tr>
<tr>
<td>Northern Gas Network H21</td>
<td>United Kingdom</td>
<td>2026</td>
</tr>
<tr>
<td>Ravenna Hub - ENI Hydrogen</td>
<td>Italy</td>
<td>2026</td>
</tr>
<tr>
<td>Hydrogen to Humber Saltend</td>
<td>United Kingdom</td>
<td>2026–2027</td>
</tr>
<tr>
<td>HyNet North West</td>
<td>United Kingdom</td>
<td>Mid 2020s</td>
</tr>
<tr>
<td>Polaris CCS Project</td>
<td>Canada</td>
<td>Mid 2020s</td>
</tr>
<tr>
<td>Net Zero Teeside - BP H2Teeside</td>
<td>United Kingdom</td>
<td>2027</td>
</tr>
<tr>
<td>Humber Zero - Philips 66 Humber Refinery</td>
<td>United Kingdom</td>
<td>2028</td>
</tr>
<tr>
<td>PAU Central Sulawesi Clean Ammonia with CCS</td>
<td>Indonesia</td>
<td>Late 2020s</td>
</tr>
</tbody>
</table>

Excludes facilities that are operating or in construction. Includes facilities where blue hydrogen is an interim product or a final product.

FIGURE 29 BLUE HYDROGEN PRODUCTION FACILITIES IN DEVELOPMENT AS OF JUNE 2021

4.7 MINERAL CARBONATION

Mineral carbonation is a geological process in which CO₂ reacts with rocks to form more stable mineral products known as carbonates. Basalts are prevalent globally (20) and have favourable morphology and mineralogy for mineral carbonation storage. These and many other CO₂ reactive rocks are conveniently located in regions where conventional CO₂ storage (for example, depleted oil and gas fields) is generally absent.

Mineral carbonation is currently employed for carbon storage in two different ways:

- Exposing mafic or ultramafic rocks (those rich in calcium, magnesium, and iron, such as basalt) to the atmosphere, or CO₂-saturated air, can result in mineral carbonation. This process has been used to remediate mining waste and produce construction materials. For example, CO₂-rich fume gas has been injected into processed kimberlite mine waste above ground (known as ex situ) during field trials at a Canadian mine (21).
- CO₂ is dissolved in water and then pumped, via injection wells, into porous and permeable subsurface basalt formations – Carfit’s model. (See 4.6 DACCS). The Carfit CCS Facility in Iceland has been storing CO₂ using mineral carbonation at this scale since 2014. The project permanently stores CO₂ in basalt rock formed by volcanic flows. Around 25 tonnes of water is required for each tonne of CO₂. The Carfit project is injecting 12,000 tonnes annually into shallow basals (400–800 m depth) through 12 wells. Analysis from their pilot phase shows more than 95 per cent of CO₂ was mineralised within two years (22).

New research has demonstrated this water-intensive process may also be achieved with seawater – an abundant resource (23). A version of this method was applied in 2013 at the Walulla power plant in the US state of Washington (24). Here, 1,000 tonnes of supercritical CO₂ was directly injected into porous and permeable basalt – without using water as the carrier fluid. Mineralisation rates were also rapid, with 60 per cent of the injected CO₂ mineralising within two years (24).

The storage potential of mineral carbonation has been estimated at 100,000–250,000 GtCO₂ (22). This number incorporates all basaltic rocks, which constitute 70 per cent of the world’s ocean basins and five per cent of the Earth’s continents (22). The potential for carbon storage via mineral carbonation is significant but, like all forms of CO₂ storage, additional operational project-at-scale are required to support its use.
5.1 COMMERCIAL CCS FACILITIES AND PROJECTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>COUNTRY</th>
<th>STATUS</th>
<th>OPERATING DATE</th>
<th>FACILITY INDUSTRY</th>
<th>CAPTURE CAPACITY</th>
<th>CAPTURE MAX</th>
<th>STORING CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrell Natural Gas Processing Plant (formerly Val Verde Natural Gas Plants)</td>
<td>United States</td>
<td>Operational</td>
<td>1972</td>
<td>Natural Gas Processing</td>
<td>0.4</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Enid Fertilizer</td>
<td>United States</td>
<td>Operational</td>
<td>1982</td>
<td>Fertiliser Production</td>
<td>0.1</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Shute Creek Gas Processing Plant</td>
<td>United States</td>
<td>Operational</td>
<td>1986</td>
<td>Natural Gas Processing</td>
<td>7</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>MOL Szank field CO2 EOR</td>
<td>Hungary</td>
<td>Operational</td>
<td>1992</td>
<td>Natural Gas Processing</td>
<td>0.059</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Sleipner CO2 Storage</td>
<td>Norway</td>
<td>Operational</td>
<td>1996</td>
<td>Natural Gas Processing</td>
<td>1</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Great Plains Synfuels Plant and Weyburn-Midale</td>
<td>United States</td>
<td>Operational</td>
<td>2000</td>
<td>Synthetic Natural Gas</td>
<td>1</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Core Energy CO2-EOR</td>
<td>United States</td>
<td>Operational</td>
<td>2003</td>
<td>Natural Gas Processing</td>
<td>0.35</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Sinoppec Zhongyouan Carbon Capture Utilization and Storage</td>
<td>China</td>
<td>Operational</td>
<td>2006</td>
<td>Chemical Production</td>
<td>0.12</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Snøhvit CO2 Storage</td>
<td>Norway</td>
<td>Operational</td>
<td>2008</td>
<td>Natural Gas Processing</td>
<td>0.7</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Arklow CO2 Compression Facility</td>
<td>United States</td>
<td>Operational</td>
<td>2009</td>
<td>Ethanol Production</td>
<td>0.23</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Century Plant</td>
<td>United States</td>
<td>Operational</td>
<td>2010</td>
<td>Natural Gas Processing</td>
<td>5</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Petrobras Santos Basin Pre-Salt Oil Field CCS</td>
<td>Brazil</td>
<td>Operational</td>
<td>2011</td>
<td>Natural Gas Processing</td>
<td>4.6</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Bonanza BioEnergy CCUS EOR</td>
<td>United States</td>
<td>Operational</td>
<td>2012</td>
<td>Ethanol Production</td>
<td>0.1</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Coffeyville Gasification Plant</td>
<td>United States</td>
<td>Operational</td>
<td>2013</td>
<td>Fertiliser Production</td>
<td>0.9</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Air Products Steam Methane Reformer</td>
<td>United States</td>
<td>Operational</td>
<td>2013</td>
<td>Hydrogen Production</td>
<td>1</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Lost Cabin Gas Plant</td>
<td>United States</td>
<td>Operational</td>
<td>2013</td>
<td>Natural Gas Processing</td>
<td>0.7</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>PCS Nitrogen</td>
<td>United States</td>
<td>Operational</td>
<td>2013</td>
<td>Fertiliser Production</td>
<td>0.2</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Boundary Dam 3 Carbon Capture and Storage Facility</td>
<td>Canada</td>
<td>Operational</td>
<td>2014</td>
<td>Fertiliser Production</td>
<td>0.8</td>
<td>Various Options Considered</td>
<td></td>
</tr>
<tr>
<td>Quest</td>
<td>Canada</td>
<td>Operational</td>
<td>2015</td>
<td>Power Generation</td>
<td>1.2</td>
<td>Dedicated Geologial Storage</td>
<td></td>
</tr>
<tr>
<td>Ummalayiah CO2-EOR Demonstration</td>
<td>Saudi Arabia</td>
<td>Operational</td>
<td>2015</td>
<td>Natural Gas Processing</td>
<td>0.8</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Karamay Dunhuang Oil Technology CCUS EOR Project</td>
<td>China</td>
<td>Operational</td>
<td>2015</td>
<td>Methanol Production</td>
<td>0.1</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Abu Dhabi CCS (Phase 1 being Emirates Steel Industries)</td>
<td>United Arab Emirates</td>
<td>Operational</td>
<td>2016</td>
<td>Iron And Steel Production</td>
<td>0.8</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Illinois Industrial Carbon Capture and Storage</td>
<td>United States</td>
<td>Operational</td>
<td>2017</td>
<td>Ethanol Production</td>
<td>0.55</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Petra Nova Carbon Capture</td>
<td>United States</td>
<td>Operational</td>
<td>2017</td>
<td>Power Generation</td>
<td>1.4</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>CNPC JiLin Oil Field CO2 EOR</td>
<td>China</td>
<td>Operational</td>
<td>2018</td>
<td>Natural Gas Processing</td>
<td>0.35</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Gorgon Carbon Dioxide Injection</td>
<td>Australia</td>
<td>Operational</td>
<td>2019</td>
<td>Natural Gas Processing</td>
<td>3.4</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Qatar LNG CCS</td>
<td>Qatar</td>
<td>Operational</td>
<td>2019</td>
<td>Natural Gas Processing</td>
<td>2.2</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
</tbody>
</table>

5.2 COMMERCIAL CCS FACILITIES AND PROJECTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>COUNTRY</th>
<th>STATUS</th>
<th>OPERATING DATE</th>
<th>FACILITY INDUSTRY</th>
<th>CAPTURE CAPACITY</th>
<th>CAPTURE MAX</th>
<th>STORING CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberta Carbon Trunk Line (ACTL) with North West Redwater Partnership's Sturgeon Refinery CO2 Stream</td>
<td>Canada</td>
<td>Operational</td>
<td>2020</td>
<td>Hydrogen Production</td>
<td>1.3</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Alberta Carbon Trunk Line (ACTL) with Nutrien CO2 Stream</td>
<td>Canada</td>
<td>Operational</td>
<td>2020</td>
<td>Fertiliser Production</td>
<td>0.2</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Guodian Taizhou Power Station Carbon Capture</td>
<td>China</td>
<td>In Construction</td>
<td>Early 2020s</td>
<td>Power Generation</td>
<td>0.3</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Sinoppec Qin Petrochemical CCS</td>
<td>China</td>
<td>In Construction</td>
<td>2021</td>
<td>Chemical Production</td>
<td>0.71</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Norcem Breivik - Cement Plant</td>
<td>Norway</td>
<td>In Construction</td>
<td>2024</td>
<td>Cement Production</td>
<td>0.4</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>The ZEBROS Project</td>
<td>United States</td>
<td>In Construction</td>
<td>2023</td>
<td>Power Generation</td>
<td>1.5</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Project Intersect - Hereford Ethanol Plant</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2022</td>
<td>Ethanol Production</td>
<td>0.3</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Project Intersect - Prineville Ethanol Plant</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2022</td>
<td>Ethanol Production</td>
<td>0.33</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Wabash CO2 Sequestration</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2022</td>
<td>Fertiliser Production</td>
<td>1.5</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>San Juan Generating Station Carbon Capture</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2023</td>
<td>Power Generation</td>
<td>5.8</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>Santos Cooper Basin CCS Project</td>
<td>Australia</td>
<td>Advanced Development</td>
<td>2023</td>
<td>Natural Gas Production</td>
<td>1.7</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Bridgeport Energy Moonie CCUS project</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2023</td>
<td>Various</td>
<td>0.12</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Air Liquide Refinery Rotterdam CCS</td>
<td>Netherlands</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Hydrogen Production</td>
<td>0.8</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>ExxonMobil Benelux Refinery CCS</td>
<td>Netherlands</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Hydrogen Production</td>
<td>–</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Shell Refinery Rotterdam CCS</td>
<td>Netherlands</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Hydrogen Production</td>
<td>0.9</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Air Products Refinery Rotterdam CCS</td>
<td>Netherlands</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Hydrogen Production</td>
<td>–</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Atkinson Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.14</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Fairmont Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.3</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Otter Tail Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.14</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Shenandoah Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.21</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Superior Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.15</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Wood River Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.31</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>York Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.13</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Central City Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.3</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Aberdeen Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.12</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Casamassa Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.43</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Galva Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.09</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
</tbody>
</table>
5.0 APPENDIX

5.1 COMMERCIAL CCS FACILITIES AND PROJECTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>COUNTRY</th>
<th>FACILITY STATUS</th>
<th>OPERATION DATE</th>
<th>FACILITY INDUSTRY</th>
<th>CAPTURE CAPACITY MIN</th>
<th>CAPTURE CAPACITY MAX</th>
<th>FACILITY STORAGE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldfield Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.18 0.22</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Grand Junction Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.29 0.34</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Granite Falls Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.15 0.18</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Heron Lake Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.16 0.19</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Huron Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.08 0.09</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Lambert Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.13 0.16</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Lower Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.49 0.57</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Marcus Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.39 0.46</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Mason City Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.29 0.34</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Merrill Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.13 0.16</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Mina Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.34 0.4</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Nevada Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.22 0.26</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Norfolk Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.13 0.15</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Okita Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.19 0.23</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Plainview Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.27 0.32</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Redfield Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.15 0.17</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Sioux Center Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.16 0.19</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Steamboat Rock Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.19 0.23</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Watertown Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.32 0.37</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Wentworth Biorefinery Carbon Capture and Storage</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Ethanol Production</td>
<td>0.22 0.26</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Fortum Olkiluoto - Klametin tyre Waste to Energy Plant</td>
<td>Norway</td>
<td>Advanced Development</td>
<td>2024</td>
<td>Waste Incineration</td>
<td>0.4 0.4</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Coyote Clean Power Project</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2025</td>
<td>Power Generation</td>
<td>0.86 0.86</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>Stockholm Exergi BECCS</td>
<td>Sweden</td>
<td>Advanced Development</td>
<td>2025</td>
<td>Bioenergy</td>
<td>0.8 0.8</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>CopenHill (Amager Bakke) Waste to Energy CCS</td>
<td>Denmark</td>
<td>Advanced Development</td>
<td>2025</td>
<td>Waste Incineration</td>
<td>0.5 0.5</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Lake Charles Methanol</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2025</td>
<td>Chemical Production</td>
<td>4 4</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Abu Dhabi CCS Phase 2: Natural gas processing plant</td>
<td>United Arab Emirates</td>
<td>Advanced Development</td>
<td>2025</td>
<td>Natural Gas Processing</td>
<td>1.9 2.3</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>One Earth Energy Facility Carbon Capture</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2025</td>
<td>Ethanol production</td>
<td>0.5 0.5</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Project Tundra</td>
<td>United States</td>
<td>Advanced Development</td>
<td>2025 - 2026</td>
<td>Various Options</td>
<td>3.1 3.6</td>
<td>Considered</td>
<td></td>
</tr>
<tr>
<td>Humber Zero - VPIImmingham Power Plant CCS</td>
<td>United Kingdom</td>
<td>Advanced Development</td>
<td>2027</td>
<td>Power Generation</td>
<td>– –</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Humber Zero - Phillips 66 Humber Refinery CCS</td>
<td>United Kingdom</td>
<td>Advanced Development</td>
<td>2028</td>
<td>Hydrogen Production</td>
<td>– –</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Antwerp/C - BASF Antwerp CCS</td>
<td>Belgium</td>
<td>Advanced Development</td>
<td>2030</td>
<td>Chemical Production</td>
<td>– –</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>OXY and Carbon Engineering Direct Air Capture and EOR Facility</td>
<td>United States</td>
<td>Advanced Development</td>
<td>Mid 2020s</td>
<td>Direct Air Capture</td>
<td>0.5 1</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Mustang Station of Golden Spread Electric Cooperative Carbon Capture</td>
<td>United States</td>
<td>Advanced Development</td>
<td>Mid 2020s</td>
<td>Power Generation</td>
<td>1 1.5</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>Plant Daniel Carbon Capture</td>
<td>United States</td>
<td>Advanced Development</td>
<td>Mid 2020s</td>
<td>Power Generation</td>
<td>1.6 1.8</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Gerald Gentlemen Station Carbon Capture</td>
<td>United States</td>
<td>Advanced Development</td>
<td>Mid 2020s</td>
<td>Power Generation</td>
<td>4.3 4.3</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>Prairie State Generation Station Carbon Capture</td>
<td>United States</td>
<td>Advanced Development</td>
<td>Mid 2020s</td>
<td>Power Generation</td>
<td>5 6</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Cal Capture</td>
<td>United States</td>
<td>Advanced Development</td>
<td>Middle 2020s</td>
<td>Power Generation</td>
<td>1.4 1.4</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Midwest AgEnergy Blue Flint ethanol CCS</td>
<td>United States</td>
<td>Early Development</td>
<td>2022</td>
<td>Ethanol Production</td>
<td>0.18 0.18</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Velociys' Bayou Fuels Negative Emission Project</td>
<td>United States</td>
<td>Early Development</td>
<td>2025</td>
<td>Chemical Production</td>
<td>0.4 0.5</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Project Poukai Hydrogen Production with CCS</td>
<td>New Zealand</td>
<td>Early Development</td>
<td>2024</td>
<td>Various</td>
<td>1 1</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>Red Trail Energy BECCS Project</td>
<td>United States</td>
<td>Early Development</td>
<td>2025</td>
<td>Ethanol Production</td>
<td>0.18 0.18</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Clean Energy Systems Carbon Negative Energy Plant - Central Valley</td>
<td>United States</td>
<td>Early Development</td>
<td>2025</td>
<td>Power Generation and Hydrogen Production</td>
<td>0.32 0.32</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Pream Refinery CCS</td>
<td>Sweden</td>
<td>Early Development</td>
<td>2025</td>
<td>Hydrogen Production</td>
<td>0.5 0.5</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Acom Hydrogen</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>2025</td>
<td>Hydrogen Production</td>
<td>– –</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>HyNet North West - Hanson Cement CCS</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>2026</td>
<td>Cement Production</td>
<td>0.8 0.8</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Repsol Sakaikemang Carbon Capture and Injection</td>
<td>Indonesia</td>
<td>Early Development</td>
<td>2026</td>
<td>Natural Gas Processing</td>
<td>1.5 2</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Ravenna Hub - ENE Power CCS</td>
<td>Italy</td>
<td>Early Development</td>
<td>2026</td>
<td>Power Generation</td>
<td>– –</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Ravenna Hub - ENE Hydrogen CCS</td>
<td>Italy</td>
<td>Early Development</td>
<td>2026</td>
<td>Hydrogen Production</td>
<td>– –</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Net Zero Teesside - BP H2Teesside</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>2027</td>
<td>Hydrogen Production</td>
<td>1 2</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Net Zero Teesside - Suez Waste to Energy CCS</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>2027</td>
<td>Waste Incineration</td>
<td>– –</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>ZEBRO Carbon Hub - Keeley 3 CCS Power Station</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>2027</td>
<td>Power Generation</td>
<td>15 2.6</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Antwerp/C - Ineos Antwerp CCS</td>
<td>Belgium</td>
<td>Early Development</td>
<td>2030</td>
<td>Chemical Production</td>
<td>– –</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Antwerp/C - Exxonmobil Antwerp Refinery CCS</td>
<td>Belgium</td>
<td>Early Development</td>
<td>2030</td>
<td>Chemical Production</td>
<td>– –</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Antwerp/C - Borealis Antwerp CCS</td>
<td>Belgium</td>
<td>Early Development</td>
<td>2030</td>
<td>Chemical Production</td>
<td>– –</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Korea-CCS 1 & 2</td>
<td>South Korea</td>
<td>Early Development</td>
<td>2020s</td>
<td>Power Generation</td>
<td>1 1</td>
<td>Dedicated Geologic Storage</td>
<td></td>
</tr>
<tr>
<td>Sinoppec Shengli Power Plant CCS</td>
<td>China</td>
<td>Early Development</td>
<td>2020s</td>
<td>Power Generation</td>
<td>1 1</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>TITLE</td>
<td>COUNTRY</td>
<td>FACILITY STATUS</td>
<td>OPERATION DATE</td>
<td>FACILITY INDUSTRY</td>
<td>CAPTURE CAPACITY</td>
<td>FACILITY STORAGE CODE</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Dave Johnston Plant Carbon Capture</td>
<td>United States</td>
<td>Early Development</td>
<td>2020s</td>
<td>Power Generation</td>
<td>2 6</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>NextDecade Rio Grande LNG CCS</td>
<td>United States</td>
<td>Early Development</td>
<td>2020s</td>
<td>Natural Gas Processing</td>
<td>5 5</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>Caledonia Clean Energy</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>2024</td>
<td>Power Generation</td>
<td>3 3</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Hydrogen 2 Magnum (H2M)</td>
<td>Netherlands</td>
<td>Early Development</td>
<td>2024</td>
<td>Power Generation</td>
<td>2 2</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Dry Fork Integrated Commercial Carbon Capture and Storage (CCS)</td>
<td>United States</td>
<td>Early Development</td>
<td>2025</td>
<td>Power Generation</td>
<td>3 3</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Net Zero Teasides - CCGT Facility</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>2025</td>
<td>Power Generation</td>
<td>1.7 6</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>The Illinois Clean Fuels Project</td>
<td>United States</td>
<td>Early Development</td>
<td>2026</td>
<td>Chemical Production</td>
<td>4.1 8.1</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Northern Gas Network H21 North of England</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>2026</td>
<td>Hydrogen Production</td>
<td>1.5 1.5</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Hydrogen to Humber Saltend</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>2026-2027</td>
<td>Hydrogen Production</td>
<td>1 1.2</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Drax BECCS Project</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>2027</td>
<td>Power Generation</td>
<td>1 4.3</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Ervia Cork CCS</td>
<td>Ireland</td>
<td>Early Development</td>
<td>2028</td>
<td>Power Generation and Refining</td>
<td>2.5 2.5</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Nautical Energy Blue Methanol</td>
<td>Canada</td>
<td>Early Development</td>
<td>Late 2020s</td>
<td>Methanol Production</td>
<td>1 1</td>
<td>Enhanced Oil Recovery</td>
<td></td>
</tr>
<tr>
<td>Net Zero Teasides - NET Power Plant</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>Late 2020s</td>
<td>Power Generation</td>
<td>– –</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>PAU Central Sulawesi Clean Fuel Ammonia Production with CCUS</td>
<td>Indonesia</td>
<td>Early Development</td>
<td>Late 2020s</td>
<td>Fertiliser Production</td>
<td>0.1 2</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>Saskatchewan NET Power Plant</td>
<td>Canada</td>
<td>Early Development</td>
<td>Late 2020s</td>
<td>Power Generation</td>
<td>0.95 0.95</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>Tata Steel project EVEREST</td>
<td>Netherlands</td>
<td>Early Development</td>
<td>Late 2020s</td>
<td>Iron and Steel Production</td>
<td>– –</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>Acorn CCS</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>M12 2020s</td>
<td>Natural Gas Processing and Oil Refining</td>
<td>0.34 0.34</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>HyNet North West</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>M12 2020s</td>
<td>Hydrogen Production</td>
<td>1.5 1.5</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>LafargeHolcim Cement Carbon capture</td>
<td>United States</td>
<td>Early Development</td>
<td>M12 2020s</td>
<td>Cement Production</td>
<td>1 2</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>Barents Blue Clean Ammonia with CCS</td>
<td>Norway</td>
<td>Early Development</td>
<td>2025</td>
<td>Fertiliser Production</td>
<td>1.2 2</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Petronas Kasawari Gas Field Development Project</td>
<td>Malaysia</td>
<td>Early Development</td>
<td></td>
<td>Natural Gas Processing</td>
<td>– –</td>
<td>Under Evaluation</td>
<td></td>
</tr>
<tr>
<td>Polaris CCS Project</td>
<td>Canada</td>
<td>Early Development</td>
<td>Middle 2020s</td>
<td>Hydrogen Production</td>
<td>0.75 0.75</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Caroline Carbon Capture Power Complex</td>
<td>Canada</td>
<td>Early Development</td>
<td>Middle 2020s</td>
<td>Power Generation</td>
<td>1 3</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
<tr>
<td>Acorn Direct Air Capture Facility</td>
<td>United Kingdom</td>
<td>Early Development</td>
<td>2026</td>
<td>Direct Air Capture</td>
<td>0.5 1</td>
<td>Dedicated Geological Storage</td>
<td></td>
</tr>
</tbody>
</table>
5.2 CCS Networks

<table>
<thead>
<tr>
<th>Title</th>
<th>Country</th>
<th>Industry</th>
<th>Capture Capacity Mtpa CO₂ Min Max</th>
<th>Transport Type</th>
<th>Storage Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abu Dhabi Cluster</td>
<td>United Arab Emirates</td>
<td>Natural Gas Processing, Hydrogen Production, Iron and Steel Production</td>
<td>2.7 – 5.0</td>
<td>Pipeline</td>
<td>Enhanced Oil Recovery</td>
</tr>
<tr>
<td>Acorn</td>
<td>Scotland</td>
<td>Hydrogen Production, Natural Gas Power, Natural Gas Processing, Direct Air Capture</td>
<td>5.0 – 10.0</td>
<td>Pipeline</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>Alberta Carbon Grid</td>
<td>Canada</td>
<td>To be determined</td>
<td>20 –</td>
<td>Pipeline</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>Alberta Carbon Trunk Line (ACTL)</td>
<td>Canada</td>
<td>Fertiliser Production, Hydrogen Production, Chemical Production</td>
<td>1.7 – 14.6</td>
<td>Pipeline</td>
<td>Enhanced Oil Recovery</td>
</tr>
<tr>
<td>Antwerp/C</td>
<td>Belgium</td>
<td>Hydrogen Production, Natural Gas Power, Oil Refining</td>
<td>9.0 –</td>
<td>Pipeline</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>Asamis</td>
<td>Netherlands</td>
<td>Oil refining, Hydrogen Production, Waste Incineration, Chemical Production, Steelmaking</td>
<td>20 – Pipline, Ship</td>
<td>Deep Saline Formations</td>
<td></td>
</tr>
<tr>
<td>Athos</td>
<td>Netherlands</td>
<td>Hydrogen Production, Iron and Steel Production, Chemical Production</td>
<td>1.0 – 6.0</td>
<td>Pipeline</td>
<td>Various options Considered</td>
</tr>
<tr>
<td>Barents Blue</td>
<td>Norway</td>
<td>Chemical Production, Hydrogen Production, Waste Incineration</td>
<td>1.8 –</td>
<td>Ship</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>C4 Copenhagen</td>
<td>Denmark</td>
<td>Waste Incineration, Natural Gas Power</td>
<td>3.0 –</td>
<td>Pipeline</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>CarbonConectDelt(Dhent)</td>
<td>Belgium & Netherlands</td>
<td>Steelmaking, Chemical Production</td>
<td>6.5 –</td>
<td>Pipeline, Ship</td>
<td>Under Evaluation</td>
</tr>
<tr>
<td>CarbonNet</td>
<td>Australia</td>
<td>Natural Gas Processing, Hydrogen, Fertilisers, Waste to Energy, DAC</td>
<td>2.0 – 5.0</td>
<td>Pipeline</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>CarbonSafe Illinois Macon County</td>
<td>United States</td>
<td>Coal Fired Power, Ethanol Production</td>
<td>2.0 – 15.0</td>
<td>Pipeline</td>
<td>Various options Considered</td>
</tr>
<tr>
<td>Darlagnan</td>
<td>France</td>
<td>Aluminium production, Steelmaking</td>
<td>10.0 –</td>
<td>Pipeline, Ship</td>
<td>N/A</td>
</tr>
<tr>
<td>Edmonton Hub</td>
<td>Canada</td>
<td>Natural Gas Power, Hydrogen Production, Oil Refining, Chemical Production, Cement Production</td>
<td>– 10</td>
<td>Pipeline</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>Greensand</td>
<td>Denmark</td>
<td>Waste Incineration, Cement Production</td>
<td>3.5 –</td>
<td>Pipeline, Ship</td>
<td>Depooled Oil & Gas Reservoirs</td>
</tr>
<tr>
<td>Houston Ship Channel</td>
<td>United States</td>
<td>Various</td>
<td>– 100.0</td>
<td>Pipeline</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>Humber Zero</td>
<td>England</td>
<td>Hydrogen Production, Natural Gas Power</td>
<td>8.0 –</td>
<td>Pipeline</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>HyNet North West</td>
<td>Wales & England</td>
<td>Hydrogen Production</td>
<td>1.0 –</td>
<td>Pipeline</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>Illinois Storage Corridor</td>
<td>United States</td>
<td>Coal Power, biethanol</td>
<td>6.5 –</td>
<td>Pipeline</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>Integrated Mid-Continent Stacked Carbon Storage Hub</td>
<td>United States</td>
<td>Coal Fired Power, Cement Production, Ethanol Production, Chemical Production</td>
<td>1.9 – 19.4</td>
<td>Pipeline</td>
<td>Various options Considered</td>
</tr>
<tr>
<td>Langskip</td>
<td>Norway</td>
<td>Waste Incineration, Cement Production</td>
<td>1.5 – 5.0</td>
<td>Pipeline, Ship</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>Louisiana Hub</td>
<td>United States</td>
<td>Hydrogen Production, Iron and Steel Production, Oil Refining, Chemical Production, Ethanol Production</td>
<td>5 – 10</td>
<td>Pipeline</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>Net Zero Teeside</td>
<td>England</td>
<td>Natural Gas Power, Fertiliser Production, Iron and Steel Production, Chemical Production</td>
<td>0.8 – 6.0</td>
<td>Pipeline</td>
<td>Deep Saline Formations</td>
</tr>
<tr>
<td>North Dakota CarbonSafe</td>
<td>United States</td>
<td>Iron and Steel Production</td>
<td>3.0 – 17.0</td>
<td>Pipeline</td>
<td>Various Options Considered</td>
</tr>
<tr>
<td>Petrobras Santos Basin CCS Cluster</td>
<td>Brazil</td>
<td>Natural Gas Processing</td>
<td>3.0 –</td>
<td>Direct Injection</td>
<td>Enhanced Oil Recovery</td>
</tr>
</tbody>
</table>
5.3 CO₂ GEological STORAGE

SUMMARY OF STORAGE MECHANISMS AND SECURITY

CO₂ is stored through four trapping mechanisms. These mechanisms occur simultaneously in the pore space of a storage reservoir; however, the importance of each trapping mechanism – physical, residual, dissolution, mineralisation – changes with time and with the CO₂ plume’s evolution. Trapping of CO₂ is strongly dependent on a site’s geology and local formation conditions (fluids, pressure, temperature).

Physical trapping includes structural or stratigraphic containment – the same mechanism which traps hydrocarbons. Buoyant, free-phase CO₂ is contained below an extensive low-permeability caprock. In certain geological settings, physical trapping of free-phase CO₂ is the primary trapping mechanism. A portion of the CO₂ plume may always remain in its free phase, but it can be considered permanent if the geologic setting is stable and the CO₂ plume is behaving as predicted in the reservoir.

Residual trapping is critical in the early (decadal) period of a storage project. As a CO₂ plume migrates through the reservoir, a portion of the CO₂ remains in the pore space and micro-scale heterogeneities by capillary forces. This process is called residual trapping and is controlled by the connectivity between pores, reservoir lithology, and pre-existing pore fluid chemistry. Pores in suitable reservoirs are typically <1 mm in size, are well connected, and often make up 10–30 per cent of a rock’s volume. Buoyancy forces of the main portion of the CO₂ plume are strong enough to overcome capillary forces in pores; however, along the margins and tail of a migrating plume, small volumes of CO₂ ‘snap-off’ from the plume and are held permanently in pores, against the surface of mineral grains. As the CO₂ plume migrates away from the higher pressures at an injection well, residual trapping becomes more and more prominent. Although residual trapping occurs at the micro-scale, the volume of CO₂ trapped by this mechanism is significant when scaled to a reservoir tens of metres thick and kilometres wide. Residual trapping is critical in the early (decadal) period of a storage project.

Dissolution trapping is a simple mechanism which occurs when CO₂ comes into contact with a brine and the CO₂ is able to dissolve into the brine, forming a solution. The ability of CO₂ to dissolve in a brine is dependent on the temperature and pressure conditions of a reservoir. A CO₂-saturated brine solution is denser than the unsaturated brine and sinks to the bottom of the reservoir, where it is considered permanently stored. Over time, the CO₂-saturated brine diffuses and disperses within the regional hydrogeological system of the wider basin. Dissolution of CO₂ into brine happens immediately on contact, but dissolution trapping isn’t critical to storage until decadal- to century-time scales in conventional storage reservoirs.

Mineral trapping occurs when a reservoir is terminated against a fault or the reservoir thins stratigraphically and ultimately pinches-out. In the initial few decades of a standard storage operation, physical trapping of free-phase CO₂ is the primary trapping mechanism. A portion of the CO₂ plume may always remain in its free phase, but it can be considered permanent if the geologic setting is stable and the CO₂ plume is behaving as predicted in the reservoir.

Mineral Trapping

The interaction of CO₂ with the brine and the reservoir lithology can lead to mineral trapping. Injected CO₂ can chemically react with the minerals in a rock to form stable, product minerals – often carbonate minerals. CO₂-brine-rock reactions and associated product minerals depend on reservoir pressure, temperature, and mineralogy. Fortunately, reservoirs targeted for CO₂ storage have favourable conditions for mineralisation; mineral carbonation begins immediately on injection, but is generally a minor component of a storage project until thousands of years have passed. At this time scale, in a conventional storage reservoir, the majority of CO₂ will have already been permanently stored by the three mechanisms above. However, injection under certain conditions and into particular rocks (such as basalt) can result in rapid mineralisation of the majority of the CO₂ during the lifetime of the storage operation.

GLOBAL STORAGE MAP

The Global CCS Institute has completed a review of sedimentary basins around the world for their storage suitability. Basins were ranked as unlikely, possible, suitable or highly suitable. The suitability ranking combined spatial analysis of existing geological, energy, and infrastructure data. The spatial analysis utilised findings from previously published storage assessments, the Institute’s CO2RE database, as well as internal technical expertise.

Two important observations can be made from the distribution of suitable basins. First, those nations with suitable basins are generally near emission-intensive regions. This match will facilitate CCS development. Parts of Europe, the USA, the Middle East, Russia, and some nations in SE Asia fit this category.

Second, the distribution of suitable basins correlates with nations which have formally assessed their sedimentary basins for geologic storage. Basins which have undergone detailed assessment achieve higher scores in our analysis. For example, a basin assessed as part of a global desktop review scores lower than one which has been critically appraised for storage.

Additional analysis was conducted at the basin level to provide insights into the suitability of basins. The most commonly used basins were those which have undergone detailed assessment. However, it’s important to note, a detailed assessment does not guarantee a high suitability ranking. Some European basins, for example, have undergone detailed analysis, yet only achieve a low ranking due to their geologic characteristics.

Understanding the global distribution of suitable and accessible storage sites is required to enable the full-scale deployment of CCS.
This second phase of the catalogue adds 715 sites across 18 nations, resulting in a total of 13,000 GtCO₂ of storage resources across the entire catalogue. Significantly, resources categorised as ‘discovered’ – those which are confirmed by subsurface data – continued to grow to over 550 GtCO₂. Unfortunately, only 254 MtCO₂ of resources have been categorised as ‘commercial.’ Commercial resources must be ready for a storage operation to proceed and have:

- a regulatory environment that enables CO₂ storage
- been thoroughly analysed using subsurface data and confirmed as technically feasible.

An order of magnitude difference between total resources and those proven commercial resources demonstrates an incredible opportunity to explore, develop, and appraise storage resources globally.

The 2021 CO₂ Storage Resource Catalogue update has added over 1000 GtCO₂ storage resources, bolstering the world’s identified storage capacity. These findings are derived from a project funded by the Oil & Gas Climate Initiative (OGCI) and completed by Pale Blue Dot Energy and the Global CCS Institute. The goal of the Storage Resource Catalogue is to create a global storage resource database using the Society of Petroleum Engineers Storage Resources Management System (SRMS). The SRMS creates a commercial framework using a consistent methodology and set of definitions to classify CO₂ storage resources.
6.0 REFERENCES

6.0 REFERENCES
The Global CCS Institute provides knowledge, data, networking and advocacy services to its members and offers a comprehensive range of consultancy services related to CCS.

Any Questions
Contact a member of the Advocacy and Communications Team
globalccsinstitute.com/contact

Head Office
Level 16, 360 Elizabeth Street,
Melbourne VIC 3000
Australia
P +61 (0)3 8620 7300

©Global Carbon Capture and Storage Institute Ltd 2021
Unless stated otherwise, copyright to this publication is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence.
The Global CCS Institute has tried to make information in the publication as accurate as possible. However, it does not guarantee that the information in its publication is totally reliable, accurate or complete. Therefore, the information in this publication should not be relied upon solely when making investment or commercial decisions.
The Global CCS Institute has no responsibility for the persistence or accuracy of URLs to any external or third party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. To the maximum extent permitted, the Global CCS Institute, its employees and advisers accept no liability (including for negligence) for any use or reliance on the information in this publication or any commercial or investment decisions made on the basis of information provided in this publication.

Please use the following to reference the report:

Design by Fluid Branding
fluid.com.au