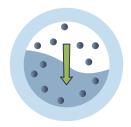
CARBON CAPTURE AND STORAGE CCS AT A GLANCE SERIES

Capture is the first stage of the CCS process. It involves separating CO₂ from emissions produced by industrial processes such as cement or steel production, or from fossil fuel-based power generation. CO₂ can also be captured directly from the air.

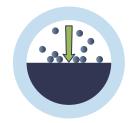
CAPTURE FROM INDUSTRIAL PROCESSES OR POWER GENERATION

Three main methods are used to capture CO₂ from either industrial processes or power generation:

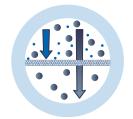
- » Pre-combustion
- » Post-combustion
- » Oxyfuel combustion

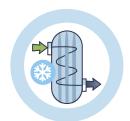

All involve physical or chemical processes being applied to capture the CO₂ so that it can be transported and stored.

The diagram below shows key steps in postcombustion capture.


Fuel Combustion Gas produced during combustion is treated with chemicals that absorb CO₂ Once absorbed, the CO₂ is then compressed, ready for to form a CO₂ stream The CO₂ is then compressed, ready for transport and storage

An advantage of post-combustion technology is that it can be retrofitted to existing power stations.


TECHNOLOGIES USED DURING CO2 CAPTURE


ABSORPTION BY LIQUID SOLVENTS

ADSORPTION
ONTO THE SURFACE OF
SOLID SORBENTS

SEPARATION USING MEMBRANES THAT ACT LIKE MOLECULAR SIEVES

CRYOGENIC SEPARATION

Other advanced technologies are being pursued such as chemical looping.

CARBON CAPTURE AND STORAGE CCS AT A GLANCE SERIES

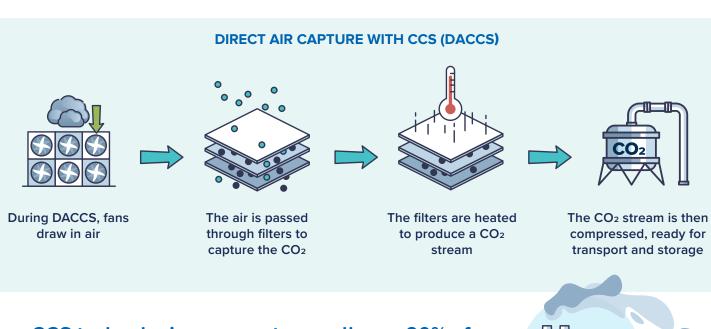
CARBON CAPTURE HAS WIDE RANGING APPLICATIONS

ESSENTIAL TO MITIGATE CO2 EMISSIONS FROM INDUSTRY

Almost 34% of global-energy related CO_2 emissions come from industrial processes such as cement, steel, pulp and paper, chemicals and natural gas processing.

CRITICAL PART OF THE LOW-CARBON ENERGY SECTOR

Power plants equipped with CCS can supply flexible low-carbon electricity to complement the variable nature of renewable energy.


ENABLER FOR LOW-CARBON HYDROGEN PRODUCTION

Low-carbon hydrogen can help decarbonise the transport sector and be used for power generation. It can also be used to produce other low-carbon products such as ammonia, urea and fertiliser.

CONTRIBUTES TO OTHER TECHNOLOGIES THAT REMOVE CO2 DIRECTLY FROM THE AIR

CO₂ can be removed directly from the air using methods underpinned by CCS. Direct Air Capture with CCS (DACCS) is one example of this.

CCS technologies can capture well over 90% of CO₂ emissions from industries where they are applied – CO₂ that would otherwise have been released into the atmosphere.

Read our annual **Global Status Report** for information on CCS progress worldwide.

Read our annual

Technologies Compendium

for the latest in CCS
technology advances.