

PERSPECTIVE

THE SAFETY AND PERMANENCE OF CO₂ GEOLOGICAL STORAGE

AISHAH HATTA, Senior Storage Lead

DR. CHRIS CONSOLI, Principal Storage

DR. MOJTABA SEYYEDI, Senior Storage Lead

SEPTEMBER 2025

1.0 A HISTORY OF SAFE AND **EFFECTIVE CO, STORAGE**

Safe and permanent CO₂ storage is a critical pillar in the fight against climate change, offering a scalable solution to achieve net zero emissions. This perspective examines the history and current state of play. confirming that CO₂ can be stored safely and permanently at the scale required for CCS to deliver deep emission reductions for industry.

Decades of research, development, and deployment (RD&D) have established a robust scientific foundation for CO₂ storage, demonstrating that it is safe and permanent. Academic research, pilot projects, and large-scale demonstration initiatives have bolstered our understanding of CO₂ storage processes. Research has been ongoing since the 1970s, validating and testing the ability of CO₂ to be stored permanently and safely.

Today, we have 18 commercial dedicated¹ CO₂ storage projects (there are also 33 enhanced oil recovery or EOR projects that monitor CO₂ injection and storage, but these are not included in this number) and over 50 pilot and demonstration projects actively injecting and monitoring CO₂. Researchers and industry professionals design these projects to confirm that CO₂ can be effectively injected, stored safely and monitored to confirm permanence.

Dedicated CO2 storage projects only, where the commercial driver and primary purpose is to store CO2. Excludes all projects not directly related to CO2 storage, EOR projects and

RESEARCH AND DEVELOPMENT

INITIAL ACADEMIC STUDIES

CO₂ Storage research begins. Marchetti (1976) identifies storing CO₂ to mitigate the rising CO₂ level, and Horn & Steinberg (1982) publish potential storage sites in the US.

GLOBAL STORAGE DEVELOPMENT

Norway, Netherlands, UK, Canada, Japan, US and Australia publish first studies on CO₂ storage characterisation. IEAGHG created.

INTERNATIONAL RECOGNITION

IPCC publishes special report on CCS. UNFCCC recognises CCS in the first assessment report. CSLF3 and RCSP4 founded.

PROLIFERATION OF KNOWLEDGE

70,000 peer-reviewed articles apply scientific methods of observe, test, question, reproduce and openness on CO₂ storage, confirming safety and permanence.

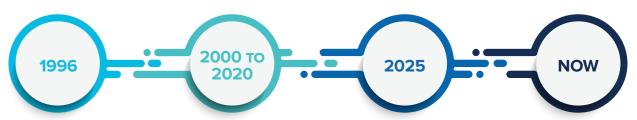
PILOT AND DEMONSTRATION

WEYBURN - MIDALE (CAN)

Canadian IEAGHG programme tests the safety and permanence of CO₂ used in an enhanced oil recovery field.

PROOF-OF-CONCEPT PILOTS

Nagaoka (JPN), Otway (AUS), Ketzin (GER), Frio (US), Lacq (FRA), advancing characterisation, injection, and CO₂-specific monitoring technology. Nagaoka (JPN) pilot injection and monitoring confirms safety and permanence during earthquake.


DEMONSTRATING STORAGE

Shenhua Ordos (CHN), Illinois Decatur (US), Tomakomai (JPN), demonstrates CO2 storage and monitoring at commercial scale. CarbonSAFE hosts 24 validation and testing projects.

50 PILOTS AND DEMONSTRATION

Globally, 50 pilot and demonstration projects confirming the safe and permanent storage of CO₂

COMMERCIAL REALITY

SLEIPNER (NOR)

Start of the Sleipner project (NOR) — first commercialscale saline formation storage. Sleipner has now been operating for 30 years, storing around 20 million tonnes² of CO2.

COMMERCIAL-SCALE SUCCESS

Quest (CAN), In Salah (ALG), Boundary Dam (CAN), Gorgon (AUS), Illinois Industrial (US), Snøhvit (NOR), Qatar LNG

NORTHERN LIGHTS

A transport and storage network in the offshore Norwegian North Sea stores Europe's emissions from various sources

18 PROJECTS

Operating dedicated geological storage projects globally, storing over 80 million tonnes of CO₂. This excludes EOR projects worldwide.

ttps://www.equinor.com/news/20240404-reducing-emissions-from-sleipner-and-gudrun

³ Carbon Sequestration Leadership Forum (CSLF)

Regional Carbon Sequestration Program (RCSP) US

Figure 1: Global operational commercial geological CO₂ storage projects

CCS is a globally recognised tool for permanently reducing and removing CO_2 emissions, starting with Equinor's Sleipner CCS project in 1996. Thirty years later, 18 commercial dedicated geological CO_2 storage projects are currently operational globally, storing over 80 million tonnes of CO_2 , demonstrating the safety, reliability, and scalability of CO_2 storage globally⁵. These commercial projects are spread around the world, with most located in the US (6), but extending across Canada (2), Iceland (1), Norway (3), Italy (1), Qatar (1), China (1), Australia (2) and New Zealand (1).

Five of these projects are offshore, while the remaining ones operate onshore, showcasing the flexibility of CO_2 storage technologies to adapt to both marine and terrestrial environments. The Snøhvit Project, located in the Barents Sea within the Arctic Circle, exemplifies offshore storage in extreme cold, having operated safely since 2008. On the other hand, the Moomba project in the arid Australian desert injects 1.7 million tonnes of CO_2 annually, proving the feasibility of storage in harsh, remote regions. The global distribution of these projects highlights the adaptability of CO_2 storage to diverse locations, geological settings,

and depths, and demonstrates its feasibility regardless of geographic or environmental challenges.

Over three decades of operational experience with CO_2 storage projects have provided invaluable insights into ensuring safe and permanent storage of CO_2 . Across the 18 large-scale operational projects to date, there have been no reported cases of CO_2 leakage to the surface causing environmental harm, reinforcing the safety of well-managed geological storage.

⁵ Seyyedi, M., Consoli, C., Minervini, J., Hatta, A., & Williams, E. (2024). The Global Landscape of CO₂ Storage Projects: Insights, Trends, and Urgent Action. https://ssm.com/abstract=5063681

REGULATORY FRAMEWORKS AND STANDARDS GUIDE SAFE CO₂ STORAGE

Regulatory frameworks provide a structured approach to risk management, operational oversight, and long-term monitoring, which are essential for achieving safe and permanent CO_2 containment. Legal and regulatory frameworks have an important role in different storage sites' lifecycles:

Figure 2: The role of legal and regulatory frameworks in the CO₂ storage lifecycle.

SITE SCREENING AND SELECTION

IDENTIFICATION AND SELECTION OF STORAGE SITES

Establishing minimum criteria for geological site suitability, ie, containment properties and minimal risk of leakage.

Mandating comprehensive risk assessments throughout the project lifecycle.

INJECTION OPERATION

OPERATION AND STORAGE ACTIVITIES

Ensuring that best practices are followed, including proper well design, injection rate limits, and pressure management.

Requiring continuous monitoring to detect and address anomalies, such as leakage or unintended CO₂ migration, at the earliest stage.

CLOSURE AND POST CLOSURE

LONG-TERM STEWARDSHIP

Defining the rules that specify the duration and scope of postclosure monitoring, financial responsibility for maintenance,

Defining mechanisms for transitioning liability to a governing authority once the site is secure.

The storage operator will be guided by regulations in all jurisdictions where CCS is employed. In addition to regulations, several guidelines and standards are available, such as the IEAGHG Report⁶, the US DOE Best Practice Manuals⁷ and the International Standards Organization's ISO 27914:2017 Geological Storage⁸,

amongst several other standards for ensuring safety and cross-cutting issues. These regulations, standards, and guidelines collectively cover the full range of a CO_2 storage operation, from site selection and characterisation, appraisal, and operation through to post-closure.

CO₂ STORAGE IS PROVEN, SAFE AND PERMANENT Decades of research, operational advancements, and collaborative efforts have confirmed the safety and permanence of CO₂ storage for CCS operations. Real-world commercial-scale projects, such as Sleipner in Norway, have demonstrated the feasibility, safety, and reliability of CO₂ storage, setting benchmarks for the industry. Active operations worldwide show the adaptability of CO₂ storage to various locations and geological settings. These achievements are complemented by robust regulatory frameworks that ensure the integrity of storage operations, addressing environmental and public safety concerns.

⁶ IEAGHG. (2009). CCS Site Characterisation Criteria Report 2009/10.

⁷ National Energy Technology Laboratory. (2024). Carbon Capture and Storage Best Practice Manuals. https://Netl.Doe.Gov/Carbon-Management/Carbon-Storage/ Strategic-Program-Support/Best-Practices-Manuals

⁸ International Organization for Standardization. (2016). ISO 27914:2017: Carbon dioxide capture, transportation and geological storage — Geological storage.

Global CCS Institute Level 23, Tower 5, 727 Collins Street Docklands VIC 3008 Australia

alobalcosinstitute com

Copyright © 2025 Global CCS Institute

The Global CCS Institute and the authors believe that this document represents a fair representation of the current state of law in the key areas and jurisdictions considered, however its content should not be construed as, or substituted for, professional legal advice. The Global CCS Institute has tried to make information in this publication as accurate as possible. However, it does not guarantee that the information in this publication is totally reliable, accurate or complete. Therefore, the information in this publication should not be relied upon when making investment or commercial decisions or provided to any third party without the written permission of the Global CCS Institute.

The Global CCS Institute has no responsibility for the persistence or accuracy of URLs to any external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. To the maximum extent permitted, the Global CCS Institute, its employees and advisers accept no liability (including for negligence) for any use or reliance on the information in this publication, including any commercial or investment decisions made on the basis of information provided in this publication.