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THE GLOBAL CCS INSTITUTE

WHO WE ARE
International CCS think tank with offices around the world.

Over 200 members across governments, global corporations, private companies,
research bodies and NGOs, all committed to a net-zero future.

WHAT WE DO

Fact-based influential advocacy, catalytic thought leadership, authoritative knowledge
sharing.
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David Kearns — Principal Carbon Capture Technologies

 Technical expert in CO, capture technologies, with experience across energy,
industrial, and research sectors.

« Chemical Engineer with experience in consulting, engineering design, research,
and plant operations.

Shahrzad S. M. Shahi — Carbon Capture Technology Lead

« Expertise in process-related analytical modelling, concept development and
feasibility studies.

« Chartered Chemical Engineer with a background in O&G and Renewable
Hydrogen.

Hugh Barlow — Carbon Capture Technology Lead

« Coordinator of the Technology Compendium.
« Chemical Engineer with a background in ASU, CO, Capture, and LNG

Liquefaction.
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CCS AT A GLANCE
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TECHNOLOGY COMPENDIUM

The Technology Compendium is a platform for CCS technology providers and owners to share
information about their technology to an audience of designers, developers, and advocates.

Next edition — Mid-year 2025; submissions opened in Feb 2025 and will close on 31 Mar 2025.
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AND COSTS

: ‘ . GLOBAL CCS
| INSTITUTE



TECHNOLOGY PATHWAYS

CHEMICAL ABSORPTION PHYSICAL ABSORPTION

ADSORPTION MEMBRANES

SOLID LOOPING CRYOGENIC

GLOBAL CCS
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TECHNOLOGY READINESS

/ Several technologies across the pathways at TRL 9

9 Normal commercial service

including amine solvents, hot potassium

Commercial demonstration, full-

Demonstration 8 scale deployment in final form Carbonate’ phy5|ca| SO|ventS, pressure SWing
Sub-scale demonstration, full -
7 functional prototype absorbers, membranes, and cryogenic systems.

Fully integrated pilot tested in a
relevant environment

Sub-system validation in a relevant

Development 5 environmen . . . .
Syst'emva"jaﬁm s ooy Emerging technologies in various phases of deployment,
enment t from lab testing to commercial demonstration.
roof-of-concept tests, componen
level . .
Commercial 2  Formulation of the application Alm: To Improve on current Ca pture SyStemS'

Basic principles, observed, initial
concept

Table 1- TRL Assessment of CO; capture technologles commercially avallable or under development. TRL 2020 Assessment
from Technology Readiness and Costs Report (Global CCS Institute, 2021)

This report includes our latest TRL mm
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TYPICAL MEA CAPTURE PLANT

Standard absorber-desorber
arrangement, with DCC e
pretreatment and water wash.

Unless otherwise stated, the | =l— — | N
modelled flue gas contained i_
13.7 mol% COZ N .
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Further Assumptions and Parameters

Where not mentioned, capture fraction is 90%
across the absorber.

Inlet flue gas is at a temperature of 55°C and a
pressure of 5 kPag.

Minimum temperature approaches of 10°C are
controlled on all heat exchangers.

Capacity Factor: 90%
Operating Life: 30 years
Discount Rate: 10%

Cooling Water: $0.0317/m?3
Electricity: $77/MWh
Low Pressure Steam: $19.4/tonne

Costing Calculations based on the United States NETL
Quality Guidelines for Energy System Studies: Cost
Estimations Methodology for NETL Assessments of

Power Plant Performance
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The reboiler dominates in
the modelled MEA capture
system.

Other key operating cost
units such as the blower
and coolers also contribute
significantly.

These costs are estimates.

Highly sensitive to

assumptions and design. N

Often a trade-off between o _ _
Total Annual Costs per unit, inclusive of both capital and variable

Ca pEX and OpeX. operating costs. 90% Capture — Estimated $77.26 US/tonne CO2

Flue Gas Blower, 13%

®

Lean Cooler, 5%
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DRIVERS OF COST

CO, Partial Pressure Capture Fraction

Plant Scale

Technology Selection

Energy Costs Flue Gas Treatment

O

Retrofit v New Build
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ost of Carbon Capture (USD;ey0 per tonne

PARTIAL PRESSURE AND CAPTURE FRACTION

Partial pressure determines size of
the process equipment, the energy
requirements, and applicable capture
technologies.
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A capture fraction of 90% is a benchmark,
not a technical limitation.

Capture fraction can rise to near 100% -
Marginal costs tend to rise above 97%.
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Economies of Modularisation Heat Integration Subsidised

Scale Finance
Novel Solvents

Novel Capture Pathways

Process Optimisation

Upstream Process Adjustments Learnina b —
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TRENDS IN COSTS — COAL
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TRENDS IN COSTS — NATURAL GAS

Cost of CO, Capture (US$.025 per tonne CO,)
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TRENDS IN COSTS — HYDROGEN
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COMPRESSION

Critical Pressure

(73.8 bar)
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CO, Pressure (bar)

CO, density jumps at the critical pressure, forming dense liquid
(aka dense phase) CO.,.

As a gas is compressed to higher pressures, it gets hotter.
Hotter gas has a higher volume, which increases energy

consumption.
Dense phase CO, required when CO, injected into geological
storage formations, to maximise use of pore space. CO, compressors are multi-stage (4-8 stages). This divides the
compression into smaller parts, allowing the gas to be cooled
As CO, typically captured at/near atmospheric pressure (~1 after each stage, reducing energy consumption.

bar) we use compressors to boost the pressure. _—
Water is removed in concert with compression, both through |:. GLOBAL CCS

Above the critical pressure, a pump can be used, as the dense condensation and later with a dedicated dehydration step. INSTITUTE
phase CO, is mostly incompressible (little volume change).




COMPRESSION

[ O&M M Capital M Energy

0.86 1.02 0.86 0.96

Cost of CO, Compression and Pumping (US$/tonne)

0.33 0.82 1.64 3.29 4.93 6.57 8.21
CO; Flowrate (Mtpa)

Above 3.3 Mtpa, a 2" compressor train is required (compressors max out at
CO, compressor for Santos” Moomba CCS Project 40 MW). Hence costs jump up again.

Source: Baker Hughes
Energy consumption per tonne is constant always — no economies of scale.

Ideal scale is ~3 Mtpa of CO,. Supported by CCS networks to build volumes.
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CO, PIPELINES

CO, pipeline being 060
installed in

Rotterdam, 0.50
Netherlands
Source: Porthos
Project

——

0.40

0.20

Most CO, pipelines are made of conventional steel. Similar to natural gas pipelines,
though usually rated for higher pressures.

0410

Cost of Pipeline Transport (US$/km/tonne)
&
(=]

009 20 0

Dense phase CO, pipelines are lower cost (per tonne of CO,) for all flows. Despite Hoo § ; 1 - ; . : . , i ;
being more expensive per km than gas phase CO, pipelines (thicker walls to withstand ) ) °
higher pressures), they can transport much more CO, due to the higher CO, densities. €Oz Flowrate (Mtpa) - Dense phase lines

—a— (Gas nhase lines

Cost of CO, pipelines for gas-phase (< 73.8 bar) and dense-phase

Gas-phase CO, pipelines have their place for transporting CO, from capture plant to transport.

compression station.

Cost given in US$/km/tonne — the cost depends on CO, tonnage

Economies of scale run out at around 1-1.5 Mtpa. Networks facilitate these volumes. but also on length

Above are for onshore pipelines — offshore will cost more.
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CO, Liquefaction and Shipping: A Critical Step in CCS Value Chains

Why liquefaction?

v Higher Density & Lower Costs
v Long-Distance Viability

v' Moderate Pressure Advantage

CO, Shipping costs

v Shipping Pressure: Low Pressure
(LP), Medium Pressure (MP), and
High Pressure (HP)

v Ship Size

v Energy Consumption

Pressure (bar)

Triple Point,
-56.6C, 5.18 bar

CO:pressure-temperature phase diagram

Solid Supercritical Region
Dense Phase Liquid
Critical Point,
31 C, 73.8 bar
Liquid Elevated Pressure
35-45 bar
0°Cto10°C
Medium Pressure
15-18 bar
Low Pressure 2510 -30°C
6-10 bar
-45 to -50° C Gas

Temperature (°C)

Melting Line === Saturation Line === Sublimation Line
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LIQUEFACTION PROCESS OVERVIEW

Major Cost Drivers: Values in this study: Pre-cooled Linde Hampson System

o Initial COZ pressure — 1 bar r B Joule - Thomson

Low Pressure: 6 bar and -53 °C BL A ,_|
« Transport pressure — t ]

Medium Pressure: 15 bar and -28 °C

Multl-stream Heat

Exchanger
i J ‘
|

 Flow rate — 0.5,1,15and2Mtpa . ,

[ —
1
After Cooler 1, HP Compressor
1 KO
I Drum
h

LP Compressor

« Stream impurities - out of Scope

Liquid €Oz to ships

Low Pressure - 2 stages
Medium Pressure - 1 stage

PI‘OCESS FIOW: Low Pressure - 2 stages

Medium Pressure - 3 stages

> Multi-stage Compression: increases CO, pressure incrementally.
» Heat Exchangers: reduce CO, temperature to achieve liquefaction.

» Knockout (KO) Drums: ensure gas purity by removing impurities and liquids.

GLOBAL CCS
INSTITUTE

> Refrigerants: Using advanced refrigerants, such as ammonia, improves cooling efficiency and reduces energy |:.
consumption. -



COST ANALYSIS OF CO, LIQUEFACTION SYSTEMS (1/2)

Capital Costs:

Liquefaction Annualised Capital Cost
Breakdown by Equipment at 1 Mtpa for
medium-pressure and low-pressure
liquefaction.

Operating Costs:

« Utility costs are the major contributor
(electricity and cooling water).

« Medium-pressure systems offer ~10%
energy savings compared to low-pressure
systems.

Utility Costs (MM /year)

Multi

25

20

15

10

HP Compressor

-stream Heat
Exchanger

Refrigerant
Compressor

0.5

Medium
US$38

Heat

Exchanger Separator
1% 2%

Pressure,
million

KO Drums

LSy | P Compressor

B Medium Pressure

1.0 1.5

CO, Flow Rate (Mtpa)

Viulti-stream Heat
Zxchanger

Low Pressure,
US$36 million

Heat

Exchanger Separator
1% 2%

KO Drums

HP Compressor

1Al | P Compressor

Refrigerant
Compressor

B Low Pressure
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COST ANALYSIS OF CO2 LIQUEFACTION SYSTEMS (2/2)

]
[&)]

B Medium Pressure B Low Pressure

Economies of Scale

o]
o

 Costs per tonne of CO, decrease as flow rates
increase from 0.5 Mtpa to 2 Mtpa.

—_
%]

o

« Higher flow rates improve cost efficiency due to
better utilisation of infrastructure.

Liquefaction Cost of CO2 Captured ($/tCO2)
on

o

1.0 1.5

CO, Flow Rate (Mtpa)
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CO, SHIPPING COSTS IMPLICATION

Ship Size:
e Flow Rate (0.50 Mtpa to 2 Mtpa)

e Distance (500 km, 1,000 km, 1,500 km, and 2,000
km)

e Round-trip Voyage Duration

e Storage and Liquefaction Constraints

Ships modelled in the medium-pressure Scenario 1 case
(limited to 10,000 tonnes)

Distance | Flow Rate
(km) 0.5 Mtpa 1 Mtpa 1.5 Mtpa 2 Mtpa
L 1x6,000  1x10,000  2x8,000  2x10,000
WL 1x8,000 2x8,000 3x8,000  3x10,000
BT 1x10,000  2x10,000  3x10,000  4x10,000
P 2x6,000 3x8,000  4x10,000 5x10,000

e Scenario 1 —The ship sizes for medium pressure do not exceed 10,000

tonnes for all flow rates and distances.

Ships modelled in the medium-pressure Scenario 2 and low-pressure Scenario 3
(both limited to 50,000 tonnes)

Distance | Flow Rate

e Scenario 2 — The ship sizes for medium-pressure range from 2,000 to
50,000 tonnes, depending on flow rate, distances, storage and
liquefaction limitation, and round-trip voyage duration.

e Scenario 3— Similar to Scenario 2, but applies low-pressure conditions.

(km) 0.5 Mtpa 1 Mtpa 1.5 Mtpa 2 Mtpa
PETS  1x6,000  1x10,000 1x15000  1x20,000
DTS 1x8,000  1x15000  1x25,000  1x30,000
DETELT 110,000  1x20,000  1x30,000  1x40,000

1x15,000 ~ 1x25,000 1x40,000  1x50,000
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SHIP COSTS

y = 1.8083x"3958

RZ=0.7243
0
5 ®
£ o Cost estimations from studies for liquified
@ CO, vessels. Data Points sourced from a
S b Fl Global CCS Institute database, built upon
5 g the initial data sourced from an Element
S KCopitol Ggs SHip Manogement] Energy study (2018)

Second Palr, 70.50
Dallan 7.5k (Northern Lights), 49.00
Ship Size (tonne)
Low Pressure Low Pressure Ordered @® Medium Pressure 4 Medium Pressure Ordered
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ROLE OF SHIP SIZE IN COST EFFICIENCY

> Medium-Pressure (=10,000 tonnes) — Top
Chart

Small ship size — more trips — higher costs
Costs rise sharply for long distances (2,000 km)

Not viable for large-scale transport

> Medium-Pressure (=50,000 tonnes) — Middle
Chart

Larger ships reduce per-tonne costs
Cost increase is more gradual

Improved efficiency over longer distances

> Low-Pressure (=50,000 tonnes) — Bottom
Chart

Lowest transport costs across all distances
More stable cost trends, even at lower flow rates

Most cost-effective for long-haul, high-volume CO2
transport

Ships Unit Costs per tonne of CO, (US$/tCO5)

40

30

20

30

20

10

(a) Medium Pressure CO, Ships Unit Costs (Up to 10,000 tonnes)

0.5 1.0 15 2.0
)

CO, Flow Rate (Mtpa

(b) Medium Pressure CO, Ships Unit Costs (Up to 50,000 tonnes)

1.0 2.0

CO, Flow Rate (Mtpa)

(c) Low Pressure CO, Ships Unit Costs (Up to 50,000 tonnes)

1.0

CO, Flow Rate (Mtpa)



OVERALL SHIPPING COSTS

. Liguefaction . Intermediate Storage . Conditioning . Ships . Loading and Unloading

{a) Medlum Pressure CO; Shipping Costs (Up to 10,000 tonnes)

» “Intermediate Storage” costs increase with distance,
becoming a major factor at longer transport ranges. Dt

> "Ship” costs depend on size and pressure level, with low- ) el Presure G0 SHppng Costs Up 0 50000 o)
pressure, larger ships offering the best cost efficiency.

> "Liquefaction” and “conditioning” costs vary by pressure
scenario, with low-pressure requiring more energy input.

Unit cost of ship transport (US%/tonne)

» "Loading and Unloading” has a negligible impact on overall O et
costs.

(c) Low Pressure CO; Shipping Costs (Up to 50,000 tonnes)

038
0.30
1218
1068
3.01
201
30
- 13.92
10 BT o

Distance (km)
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INFLATION AND OUR ESTIMATES

Cost Estimates (Class 4) Compared with US PPI and CEPCI
Base Year: 2020 = 100

CEPCI Predicted Cost Estimate, - 906 K
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ESTIMATES AGAINST TRENDS

Cost of Capture of CO, from Coal Combustion Sources - Plants and Studies

$200.00 . . . .
2023 GCCSI Cost Estimate, with construction time,
77.26
$180.00 Porto Tolle
2020 GCCSI Cost Estimate, with construction time,
$160.00 61.2
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- Logannetk
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COST OF CAPTURE VS AVOIDED

o
N
o
£
o
(#)]
o
0
o

100 120

Assume a hypothetical plant costs

NO CCS:
out of a 100,000 tpa CO: flue gas stream
CO2z Not Captured CO:2 Captured CO:2 Emitted to
From the Flue Gas From the Flue Gas Run the Capture Plant

Hypothetical costs of CO: Captured
Cost/CO: Captured from Flue Gas =
$10,000,000/90,000 = $111.11/tCO:

WITH CCs:
COST OF COz CAPTURE

Hypothetical costs of CO2 Avoided
Cost/Net Impact =
$10,000,000/80,000 = $125/tCO2

WITH CCsS:
COST OF CO:z AVOIDED

10 -90 +10=-80 +10

The hypothetical Net Impact to
emissions is the same under both

NET EMISSION calculation methods. A reduction in
MITIGATION OVERALL emissions by 80,000 tpa
M Flue Gas CO2 Atmosphere B Captured CO2 B Uncaptured Auxiliary Boiler Emissions [. CLOBAL CCS
INSTITUTE
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