2025 AMERICAS FORUM ON CARBON CAPTURE & STORAGE

AGENDA

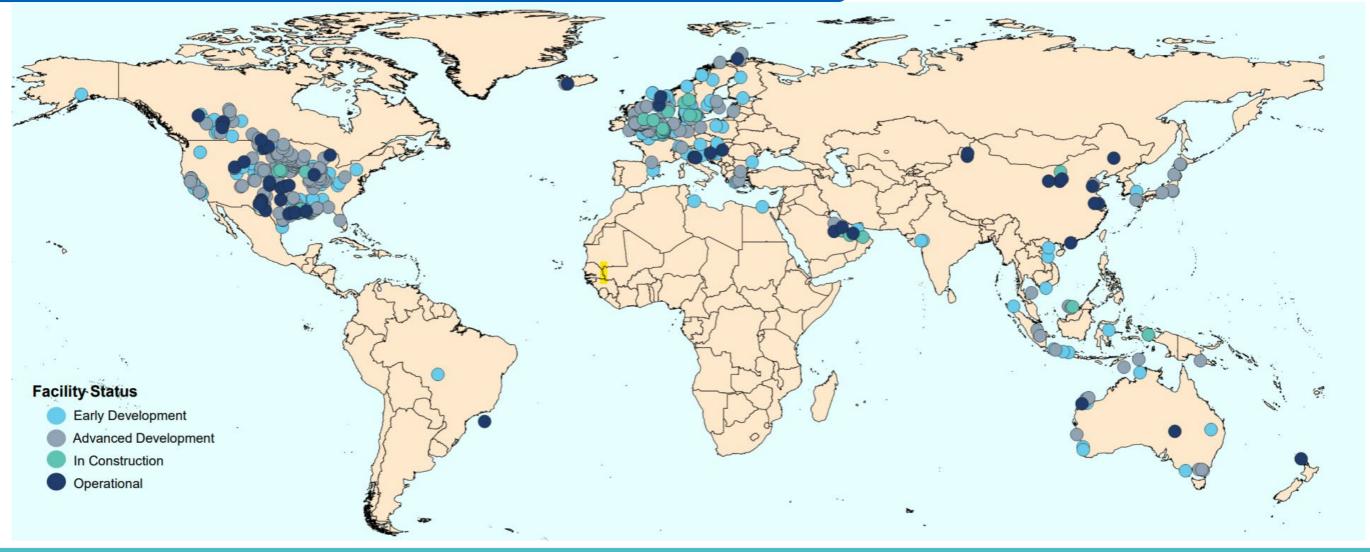
9:00 - 10:00	Registration and Networking Coffee							
10:00 - 10:15	Welcome							
10:15 - 10:45	Jarad Daniels, CEO of Global CCS Institute							
10:45 - 11:00	Jared Polis, Governor of Colorado							
11:00 - 11:30	Networking Coffee							
11:30 - 12:15	Data Center Decarbonization							
12:15 - 1:15	Networking Lunch							
1:15 - 2:00	CCS Business Models in Canada							
2:00 - 3:00	State Updates							
3:00 - 3:30	Networking Coffee							
3:30 - 4:15	Enabling Policies and Market Mechanisms for Global Deployment of CCS							
4:15 - 4:45	Justin Reimer, CEO at Emission Reduction Alberta							
4:45 - 5:00	Closing Remarks							
5:00 - 6:30	Networking Reception							

WELCOME

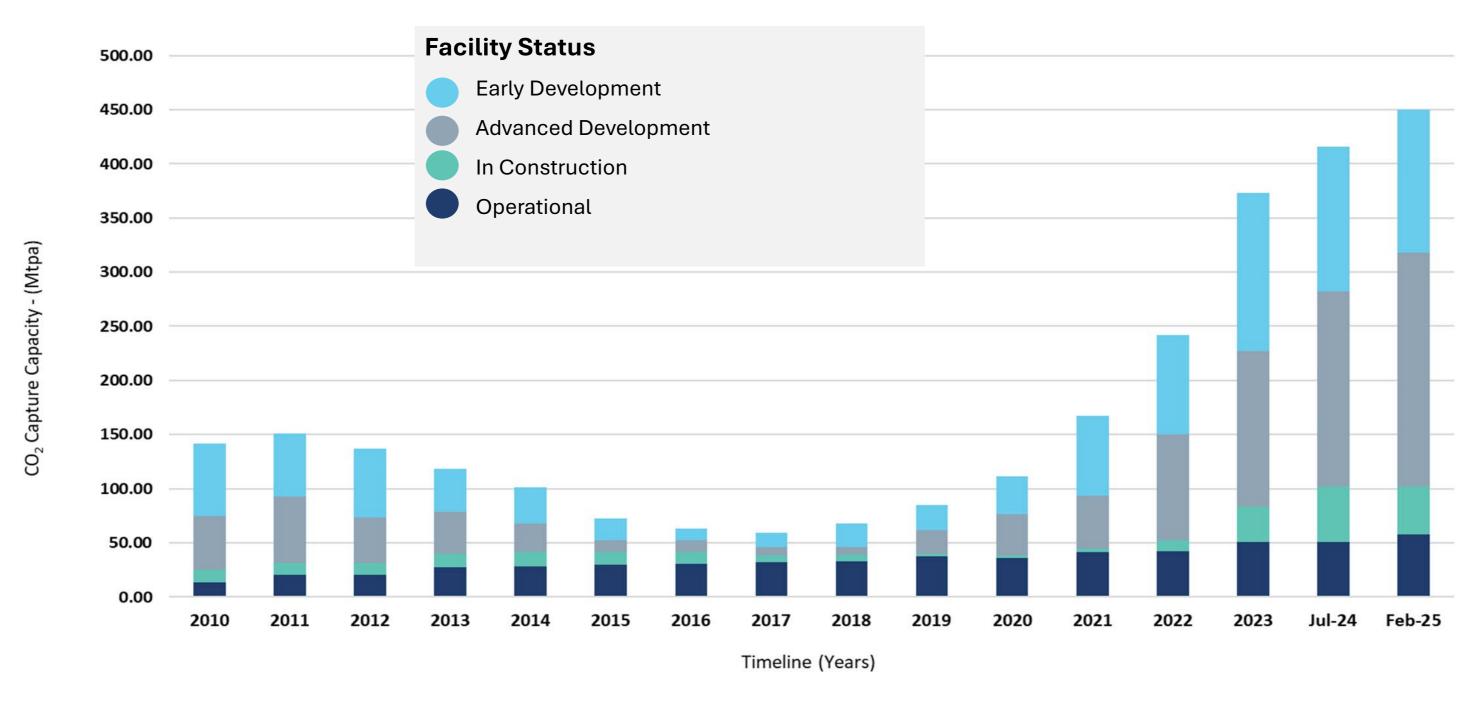
Johanna Kruger

Counsellor & Head of Program, Environment & Energy at the Embassy of Canada

THE GLOBAL STATUS OF CARBON CAPTURE AND STORAGE


Jarad Daniels

CEO at the Global CCS Institute


Global Commercial CCS Facilities

Global CCS Facility Pipeline (Feb 2025)	Number	Capture Capacity (Mtpa)
Operational	65	57
Under construction	42	44
Total project pipeline (including under development)	715	450

Capture Facility Pipeline Continues to Grow

Current CCS Outlook

- CCS is deploying in some regions, but progress is slow in others.
- Knowledge built from decades of research and lessons from operating projects can shorten the CCS deployment window in new regions.
- There are near-term opportunities for advancing CCS in Latin America, Africa, the Middle East and Asia.
- Increasing attention to carbon management under the UNFCCC, including in Nationally Determined Contributions and through the Carbon Management Challenge shows government interest and ambition to deploy CCS.
- Government policy frameworks, funding and financial incentives are still insufficient.

CCS Business Models & Financing

Project derisking remains key to CCS investment

Long-term government support is essential. This includes financial assistance, public-private partnerships, streamlined permitting and approval processes, and long-term liability assurances.

Policy-improved financing prospects partially offset by multiple factors

- Cost inflation
- High interest rates
- Permitting challenges
- Political uncertainty

Potential tailwinds for CCS

- Need for reliable baseload power
- Demand for high-quality carbon credits including removal credits – started with DACCS & evolved to include BECCS
- Increasing Multilateral Development Bank interest in CCS – could fund critical activities
- Momentum in equity investments and M&As could be a positive for debt financing of CCS projects

Collaborating for a Net-Zero Future

International collaboration platforms

- Clean Energy Ministerial
- Mission Innovation
- Carbon Management Challenge
- Asia CCUS Network

Government bilateral agreements

>50 bilateral agreements or MOUs between governments executed since 2020 that include CCS within their scope

Public-private partnerships

- Langskip: Norwegian Government, Equinor,
 Shell, Total, and Heidelberg
- Porthos: Dutch Government, the Port of Rotterdam Authority, Gasunie and EBN
- Jubail CCUS Hub: Saudi Arabia, Saudi Aramco,
 SLB and Linde
- Shepherd CCS Project: Malaysia & South Korea, Lotte Chemical, Petronas, Samsung E&A, Samsung Heavy Industries, SK Earthon, KNOC, Hanwa Corporation, Air Liquide and Shell
- Louisiana CDR Hub: US DoE, Climeworks,
 Heirloom, Batelle, and Gulf
 Coast Sequestration

Carbon Management Challenge

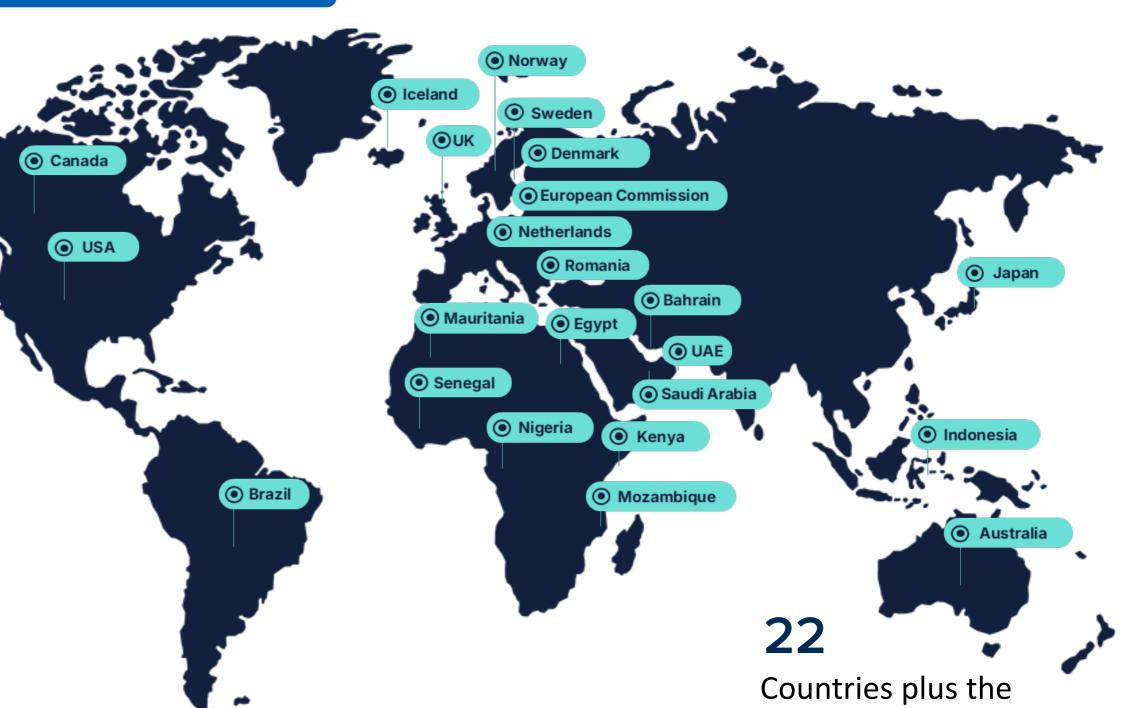
Global carbon management initiative aligned with the Paris Agreement and high-level ministerial at COP, building on existing global collaborations (i.e. CEM CCUS, MI CDR), with a stakeholder mechanism launching soon.

Advancing projects by 2030 to manage

1 gigaton of CO₂ annually

Workstream 1

Developing Country Project Finance


Co-Leads Kenya Indonesia US Workstream 2

Project
Deployment and
Tracking

Co-Leads Brazil Workstream 3

Strategic Comms and Engagements

Co-Leads Saudi Arabia UK

European Commission

CCS Progress: the United States

US continues to lead global CCS facility count

26 Operational projects in the US

11 In construction in the US

Federal and state policy incentives are sustaining CCS investment

45Q, 45V federal tax credits are in place

Bipartisan Infrastructure law and Inflation Reduction Act

- >US\$12 billion investment for carbon management & hydrogen hubs (funding under review)
- IRA increased 45Q tax credit for geologic storage of CO₂, lowered capture thresholds to qualify for tax credits, and added provisions for direct pay & tax credit transferability

Various state tax incentives, loans, offtake agreements, carbon markets, and standards (e.g. LCFS) are in effect

Emerging data center business models include CCS

 ExxonMobil, Baker Hughes with Frontier, and Chevron with Engine No. 1 and GE Vernova have announced plans to invest in natural gas power facilities with CCS to supply data center facilities

Queue of Class VI applications growing

- 54 projects with 165 applications under review across 14 US states*
- Additional 26 projects with 96 applications under review in states with Class VI primacy (WY, LA, ND)

^{*}WV primacy approved, but permit applications still sit w/EPA as of 20 Mar2025

CCS Progress: Canada & Brazil

Combination of mandates & policies drive development in Canada

7 Operational CCS facilities in Canada

Facilities in construction in Canada

Investment tax credit for CCUS projects released

 Qualified expenditures between 2022 and 2030 for direct air capture (DAC) are eligible for a 60% credit, capture other than DAC are eligible for a 50% credit, and carbon transportation, storage, and use are eligible for a 37.5% credit.

Canada Growth Fund - \$15B public investment vehicle

- Independent and arm's length from government to attract private capital and invest in Canadian projects and businesses
- Focus areas include CCS and low carbon hydrogen

Federal entity that issues CCFDs – up to \$7 billion

CCS legislation in Brazil a milestone for South America

Fuels of the Future Bill signed into law on 8 October
 2024 provides foundation for CCS regulations in Brazil

Petrobras continues successful CCS operations at its Santos Basin pre-salt reservoirs

o 13 Mt CO₂ injected in 2023

CCS Progress: Asia Pacific & India

Storage hubs & cross-border CCS projects a major focus & dominant trend

Operational CCS facility in Asia Pacific

2 Facilities in construction in Asia Pacific

Standalone CCS legislation released

- Japan
 Western Australia (Australia)
- Malaysia

Transboundary transport & storage of CO₂ in discussion

CCS potential remains strong in India

Four interministerial CCUS taskforces

collectively working on range of issues including development of technical standards

Gorgon LNG facility incorporating CCS system, Western Australia. Image courtesy of Chevron.

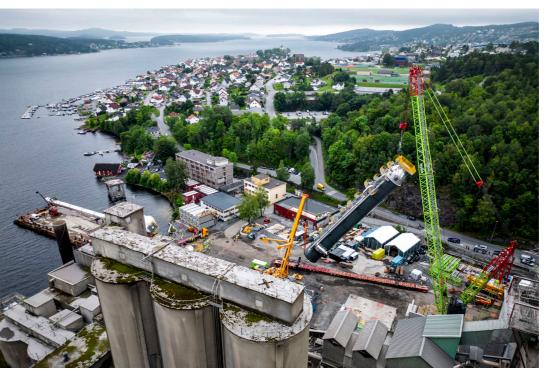
CCS Progress: Europe & the UK

Decarbonisation policies & robust CCS market anticipation drive new projects

Operational CCS facilities in Europe

Facilities in construction in Europe

CCS a key focus in climate & industrial policy agendas


- Net-Zero Industry Act
- EU Industrial Carbon Management Strategy
- EU Clean Industrial Deal
- £21.7 billion support for UK East Coast (Teesside) and West Coast (Hy-Net) clusters

Roadmaps for CCS deployment make significant progress

 10 countries, in addition to the EU, introduced or announced industrial carbon management strategies or roadmaps for CCS deployment

CO₂ transport & storage facility development surged

 Across Europe, the number of transport & storage facilities in development reached 84 – doubling in a year

Brevik CCS facility in Brevik, Norway. Image courtesy of SLB Capturi.

Update from Europe

- GCCSI's Europe Policy Forum was attended by 300
 participants, and the Multi-Government Working Group
 Meeting hosted 24 different jurisdictions record numbers
 for both events.
- Significant momentum and optimism in Europe for Carbon Management; conversations have evolved from the need to deploy CCS to choosing and implementing specific policy and regulatory frameworks.
- Project FIDs continue Northern Lights Phase II and Stockholm Exergi took FID in March '25.
- European countries leaning forward internationally; UK
 Government taking a more active role in the CMC by coleading the WG on Communication and Engagement.

CCS Progress: China

CCUS forging ahead in China

CCUS prominent in climate policies

 Implementation Plan for Green and Low-Carbon Technology Demonstration Program
 selected 6 CCUS projects for grants & low-cost financing

Plan released to reduce emissions from coal-fired power plants – includes 3 main strategies

- o CCS
- Co-firing with low carbon ammonia
- Co-firing with biomass

Central Government leading international collaboration

- Sunnylands Statement with the US
 5 large scale CCUS projects each by 2030
- Research exchange with France

Projects scaling-up and setting records

World's largest oxy-fuel project in cement sector now operational

200,000 ktpa capacity

Huaneng coal power on track for completion

1.5 Mtpa capacity – world's largest

Phase 1 of Xinjiang Oilfield coal power project under construction

1 Mtpa capacity - Phase 2 will add another 1Mtpa

Huaneng Longdong CCUS project under construction. Image source: China Energy Engineering Corporation.

CCS Progress: Middle East & Africa

Decarbonisation & low-carbon fuel development shift focus for CCS in MEA

Operational CCS facilities in MEA

Facilities in construction in MEA

CCS policy in region advancing quickly

- UAE Industrial Decarbonisation Roadmap includes CCS
- Saudi Arabia outlining ambitious targets

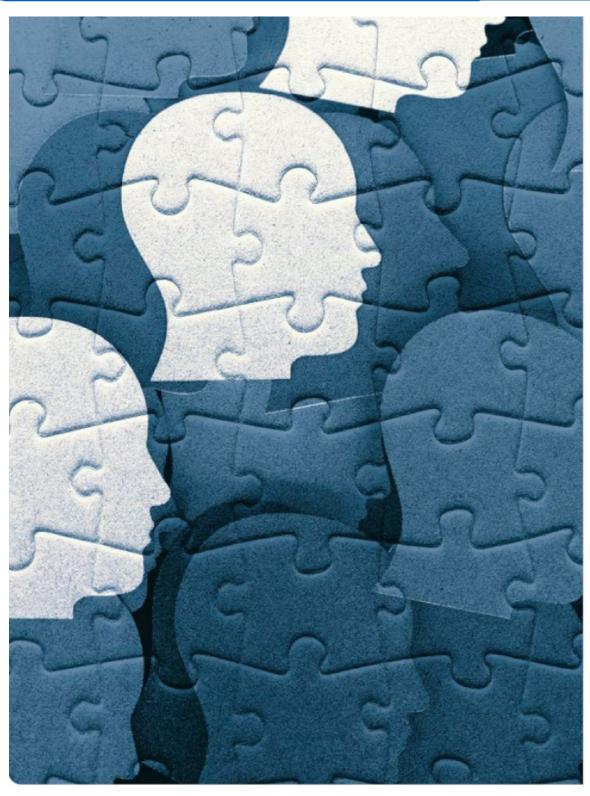
Carbon markets being established to support deployment

- UAE's Air Carbon Exchange
- Saudi Arabia's carbon crediting scheme

Collaboration at fore of development

- Advancing technology & DAC projects
- Establishing cross-border projects & CCS hubs

Notable developments move CCS forward in Africa


- Identification of storage sites progressing in Egypt
- CCUS pilot well drilled in South Africa
- Small-scale DAC project launched in Kenya

CycloneCC Industrial
Demonstration Unit in
the UAE. Image courtesy
of Carbon Clean.

Looking Ahead

1- Outlook is positive for CCS

With governments to put in place supportive policies, finance sector to channel capital and private sector to build, own and operate new projects, the outlook remains positive for CCS.

2- There are still challenges to overcome

Difficult investment settings, community concerns, regulatory barriers remain ahead.

3- Collaboration is key to global CCS deployment

Governments, industry, and research community must work together to remove barriers, lower costs and drive investment.

4- Invitation to engage

For carbon management to scale up to gigaton level, it is imperative that we all remain involved and supportive.

Thank You

THE GLOBAL CCS INSTITUTE

WHO WE ARE

International CCS think tank with offices around the world.

Over 200 members from national and sub-national governments, global corporations, private companies, research bodies and NGOs, all committed to a net-zero future.

Team of experts across the entire CCS value chain.

WHAT WE DO

Fact-based influential advocacy, catalytic thought leadership, authoritative knowledge sharing.

www.globalccsinstitute.com/global-status-report/

OPENING KEYNOTE

Governor Jared Polis

Governor of Colorado

BREAK

We'll be back at 11:30am ET

Next session

DATA CENTER DECARBONIZATION

Brian George

Global Energy Market Development and Policy at Google

Danny Rice

CEO at **NETPower**

Ian MacGregor

Executive Chair at **Power**

Lisa Berry

Decarbonization North West Digital Technology Director, Americas at **GE Vernova**

Jarad Daniels

+ MODERATOR + CEO at **Global CCS Institute**

DATA CENTER DECARBONIZATION

Brian George

Global Energy Market
Development and
Policy at **Google**

Danny Rice

CEO at **NETPower**

Ian MacGregor

Executive Chair at
North West Digital
Power

or Lisa Berry

Decarbonization
Technology Director,
Americas at
GE Vernova

Jarad Daniels

+ MODERATOR +
CEO at
Global CCS
Institute

BREAK

We'll be back at 1:15pm ET

Next session

CCS BUSINESS MODELS IN CANADA

Craig Frenette

SVP at **Brookfield**

Senior Director at **Canada Growth Fund Investment Management**

Erin Flanagan

Sanjay Bishnoi

CEO at **Entropy**

Brett Henkel

SVP of Business Development at **Svante**

Errol Pinto

+ MODERATOR + Senior Policy and Commercial Lead at **Global CCS Institute**

CCS BUSINESS MODELS IN CANADA

Craig Frenette

SVP at **Brookfield**

Erin Flanagan

Senior Director at
Canada Growth
Fund Investment
Management

Sanjay Bishnoi

CEO at **Entropy**

Brett Henkel

SVP of Business
Development at **Svante**

Errol Pinto

+ MODERATOR +
Senior Policy and
Commercial Lead at
Global CCS
Institute

STATE UPDATES

Nick Tew

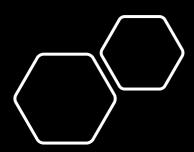
State Geologist and Oil and Gas Supervisor in Alabama

Carolyn Lozo

Chief, Oil and Gas and GHG Mitigation Branch at California Air Resources Board in **California**

Julie Murphy

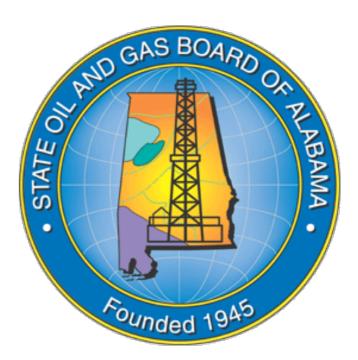
Director, Colorado
Energy and Carbon
Management
Commission in
Colorado


Jessica Moore

Director, West Virginia
Geological and
Economic Survey and
State Geologist in
West Virgina

Lily Barkau

Groundwater Section
Manager at Wyoming
Department of
Environmental Quality
in **Wyoming**



Geologic CO₂ Storage in Alabama: Overview and Regulatory Development

Nick Tew, PhD

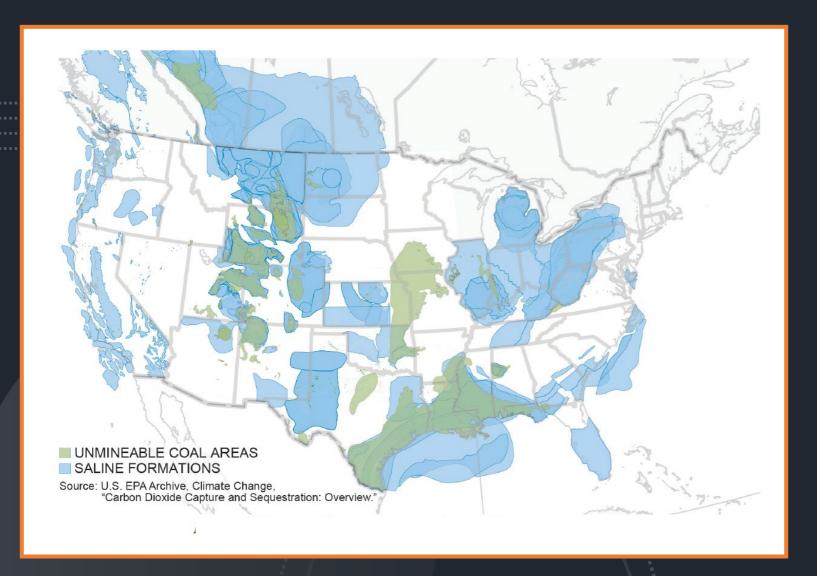
State Geologist of Alabama/Oil and Gas Supervisor Geological Survey of Alabama and State Oil and Gas Board



2025 AMERICAS FORUM ON CARBON CAPTURE & STORAGE

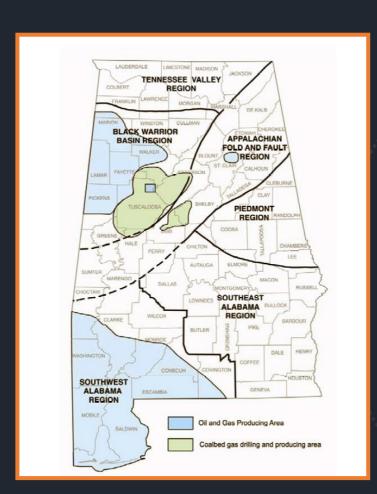
Washington, DC April 8, 2025

Geological Survey of Alabama & State Oil and Gas Board of Alabama

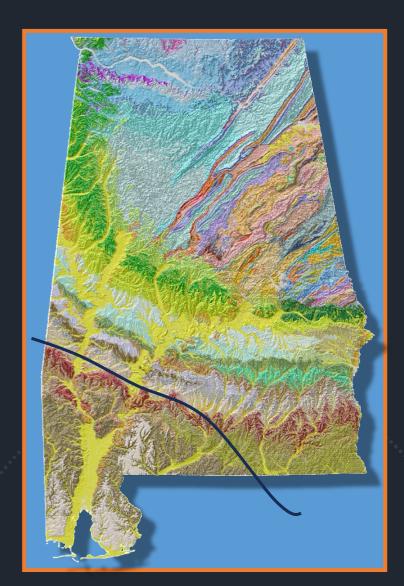

Geological Survey of Alabama

- Established in 1848
- Natural resource investigation, characterization, and development
- Fossil-fuel Mineral, Nonfuel Mineral, Water, and Biological Resources
- Significant research into Alabama's CO2 storage potential over the past 2 decades

State Oil & Gas Board of Alabama


- Established in 1945, grew out of activities of GSA
- Oil and Gas Conservation and Regulation
- Prevent waste of resources, protect correlative and coequal rights, protect ground water
- Underground storage of gases, including natural gas, CO₂, hydrogen, nitrogen, etc.

Staff of about 70 across the two agencies



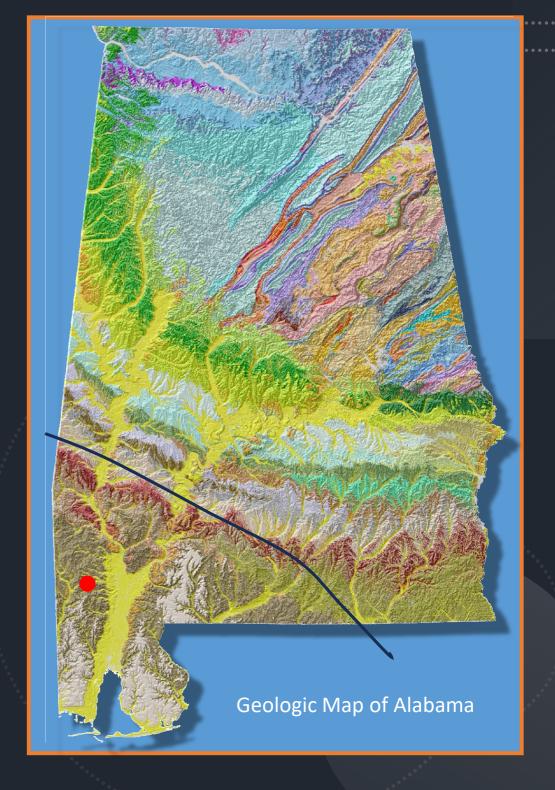
U.S. Assessment of Geologic CO₂ Storage Potential

Geologic Storage Potential in Alabama

Significant Oil and Gas Activity Areas in Alabama

Geologic Map of Alabama

Owing to O&G exploration and development, we have a wealth of subsurface data in SW Alabama


 Hypothetical well will encounter this stratigraphic section

24

	ERATHEM	SYSTEM	SERIES	RIES GEOLOGIC LITHOLOGY			LITHOLOGY	EXPLANATION		
		HOLOCENE		E UNDIFFERENTIATE		ENTIATED			Sand; grevel and sand; clay; shells in lower part.	Sandators or sand sand sand sand sand sand sand sand
	CENOZOIC		PLIOCENE		-					Glauconite
		TERTIARY	MIOCENE			Wayer sand "Dauphin sand"		O	Clay, greenish-gray, tossiliterous	Shale or Cusy
				PENSACOLA CLAY	^	Escambia Sand Member		Ö Ö	Sand, line- to very course-grained, locally containing granules, small pebbles, and shells Clay, greenish-gray, losslitterous Sand, fine- to very line-grained	Ugrile
						"Amos sand"		¢	Clay, greenah-gray, lossiliferous Sand, fine- to very fine-grained, in part shely, ally, and calcareous	Urreations or Chalik
			OLIGOCENE	UNDIFFERENTIATED JACKSON GROUP CLAIBORNE GROUP		NTIATED		and the same of	Clay, greenish-gray, lossitierous Umeslone	Angiliaceous Limestone or Mari
			EOCENE			Security 1			Limestone, clay Sand; siliceous claystone; thin limestone beds	Nodular Umedione
			PALEOCENE	WILCOX GROUP MIDWAY GROUP				and bureal	Sand, carbonaceous shale with thin beds of limestone; mart, ignula Shale, with thin beds of limestone and mart; ignile near top	Dalonike
Selma Chalks				SELM	SELMA GROUP				Chalk, maselve; chalky shale	Dokomišc Limestone
– Tusc Marine Sh		CRETACEOUS	UPPER	EUTAW FORMATION		MATION "Miler sand"			- The three sections and the section of the section	Anhydrite
→				TUSCALOOSA	'Mode-1	'Marine shale'	aetaena ee		Shale, with sandy streaks and thin sandstone beds	Selt
Lower Tusc Sands		RETA			, le	"PilotMoye sand" "Cogie sand" "Massive sand"		90 0	Sandstone, fine to medium, thin to massive, with shale interbeds	Metamorphic
Lower Cretaceous		ō	LOWER	LOWER	"Dantrier" Washita/ Frederide- burg ER Palusy EOUS Mooningsport		8	9	Sandstone, fine- to medium-grained with shate interbods; sitistone; traces of nodular limestone	Melamorphic Rock Fragments
sands	ပ္က			UNDIFF		Remy Lake Rodense Bilgo Hosston		9 9 9	Shale with some timity bedded sandationes Anhydrite, medium to masaive beds; limestone Sandistone, fine- to coarse-grained and conglomeratic with shale interbeds	+ + + + Igneous
	MESOZOIC	-?-	-? - ? COT YALL GRO		HOU	Y P	6 6 6 8 6		Sandstone, fine- to coarse-grained, conglomeratic in part, with insces of metamorphic rock fragments, shale and sandy shale; thin impastones locally	Gas-condensate
		JURASSIC		FORMATION 'Megappie aand' 'Frico City send' House aand' Buckner Anhydrite Mbr. SMACKOVER FORMATION		eletelet 	*	Shale: anhydrile; thin anhydritic and dolomitic limestone; sandslone	INDEX MAP	
			UPPER			VER		0	Annyone, min saty annyonic and colomics shale beds Ursetone, microcrystaline to crystaline, colific in part, dolomite in part, dolomite in part, grades to dolomite	
				NORPHLET FORMATION			中中中中	Sandalone, fine-grained, quartzoee, calcaraous in part		
		S	MIDDLE		ANN SALT				Maselve sell with thin anhydrite and shale beda	
		RIASSIC		WERNER FORMATION EAGLE MILLS				Anhydrite; sand and conglomerate of metamorphic, igneous, and sedimentary rock fragments		
		1.7-	??	FORMATION BASEMENT					Artesic sandstone and red shale with igneous intrusions	
				COMPLEX		+ + + + + + + + + + + +		Igneous and/or metamorphic rodus	at a	

Figure 13.--Generalized stratigraphic column for oil and gas producing areas in the Southwest Alabama Region.

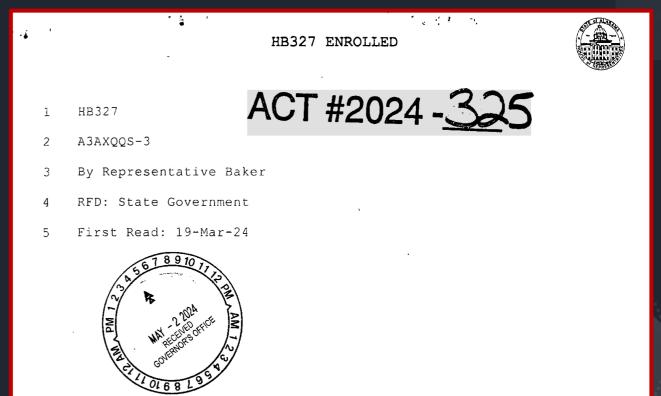
Excellent geologic setting for CO₂ storage, with significant capacity

Southwest Alabama CO₂ Storage Potential

 Act 2022-40 amended OGB's natural gas storage statute to include "...carbon oxides, ammonia, hydrogen, nitrogen, noble gases..." and stated that this "... is in the public interest and welfare of this state and is for a public purpose."

 Provided that OGB "...shall have jurisdiction and authority to regulate the operation and abandonment of underground storage facilities."

- Promulgate regulations and establish fees to defray expenses in exercising jurisdiction
- Require bonds or other financial surety


ACT #2022 - 40

- 1 SB36
- 2 215758~
- 3 By Senators Albritton and Reed
- 4 RFD: Governmental Affairs
- 5 First Read: 11-JAN-22
- 6 PFD: 01/06/2022

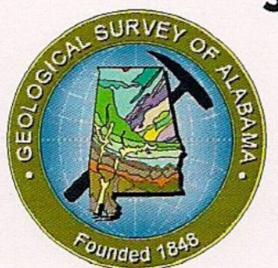
- Act 2024-325 further enabled OGB's regulatory authority and provided clarity to encourage development of a geologic storage industry in the State of Alabama.
 - Defined ownership of pore space storage rights.
 - Surface owner
 - Provided for the "amalgamation" of storage rightsanalogous to unitization for O&G.
 - Established two funds:
 - For use during active operations
 - For long term care
 - Provided parameters for ultimate closure of a storage facility.

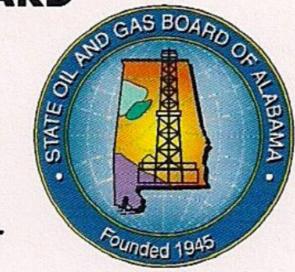
- OGB legal and technical staff drafted proposed regulations for geologic storage of CO₂ in Alabama
 - Significant interaction with other states that have promulgated or are in the process of promulgating regulations (ND, WY, LA, TX, others).
 - Very actively involved with several Groundwater Protection Council (GWPC) and Interstate Oil and Gas Compact Commission (IOGCC) CO₂ initiatives.
 - Early engagement with U.S. EPA to begin discussions on the process for gaining Class VI UIC well primacy.
 - Cooperation with the Alabama Department of Environmental Management
 - Discussions with industry groups and other interested parties

- The draft CO₂ regulations were presented to the Board for review and were adapted.
 - There was significant opportunity for public review and comment as the process moved forward.
- The regulations have now been through the Alabama Administrative Procedures process and became effective in January.
- Next step, the development of a Primacy Application to EPA, has been initiated. Should have results of crosswalk soon and will make necessary changes to regulations.
- We received an EPA Class VI grant to assist in standing up our program.
- In the meantime, OGB will co-regulate CO2 operations with EPA

Summary

- SW Alabama has ideal geology for underground storage of carbon dioxide.
- The State Oil and Gas Board of Alabama has regulatory authority over this activity and has developed regulations for CO₂ storage.
- The Board will be applying for Class VI UIC primary from EPA.
- We anticipate the development of a robust CO₂ storage industry Alabama.
- The Board will ensure the safe and proper regulation and oversight of this industry while protecting the correlative rights of all owners and citizens.




CO₂ Injection Well

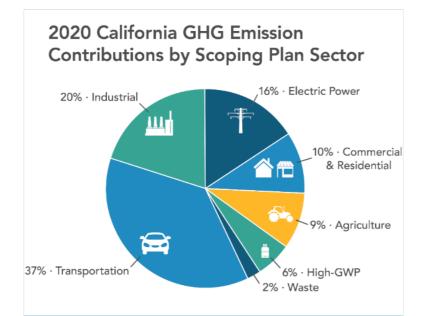
CONTACT

GEOLOGICAL SURVEY OF ALABAMA STATE OIL AND GAS BOARD

Nick Tew, Ph.D., P.G. State Geologist and Director State Oil and Gas Supervisor

Phone (205) 247-3679 Fax (205) 349-2861 ntew@gsa.state.al.us www.gsa.state.al.us 420 Hackberry Lane P.O. Box 869999 Tuscaloosa, AL 35486 www.ogb.state.al.us

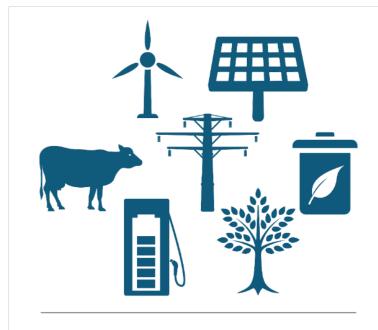
California's Programs and Policies: Carbon Capture, Removal, Utilization and Storage


April 2025 Global CCS Institute 2025 Americas Forum on Carbon Capture and Storage, Washington D.C.

California's Climate Policy Framework

GHG Targets & Goals

Legislation & Executive Orders: Total GHGs (AB 32/SB 32/AB 1279) or sector targets (SB 1383/SB 100), etc.


Scoping Plan

Actionable plan across all sectors

Action

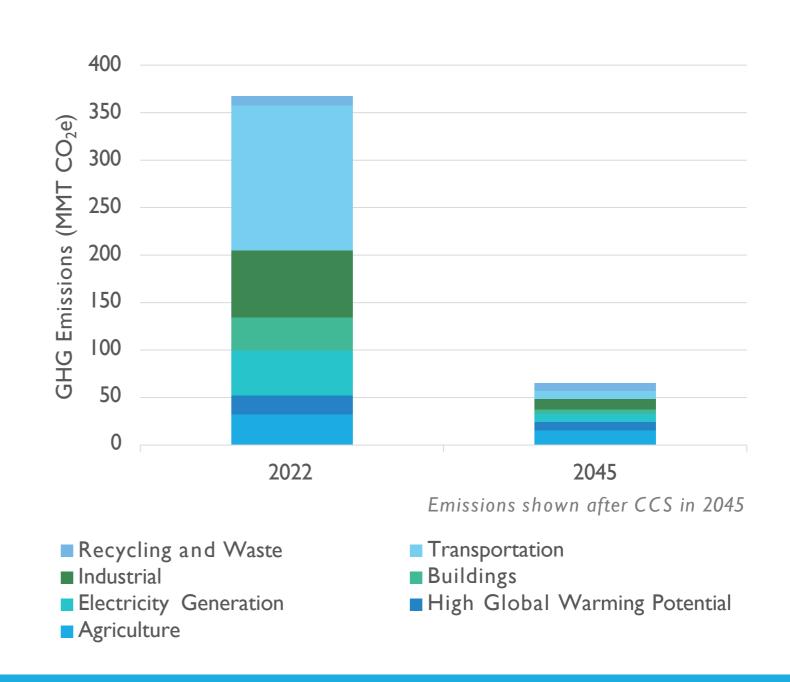
Regulations & Incentives: Advanced Clean Cars, climate change investments, etc.

Projects

Examples: Zero-emission trucks, energy infrastructure and renewables, compost facilities, digesters, etc.

Achieving Carbon Neutrality in California

The path to build our way out of over a 100 years of existing fossil energy and the built environment landscapes


AB 32 GHG Inventory Sectors Carbon neutrality by 2045, deploy a broad portfolio of existing and emerging fossil fuel alternatives and clean technologies, and align with statutes and Executive Orders

Natural and Working Lands (NWL)

Land management activities that prioritize restoration and enhancement of ecosystem functions to improve resilience to climate change impacts, including more stable carbon stocks

Target 2045

- AB 1279
 - Carbon Neutral by 2045
 - 85% GHG reduction by 2045
 - CARB to implement policies/strategies to support deployment of CCUS/CDR
- **SB** 905
 - CCUS Program at CARB, support from CNRA/DOC
- LCFS
 - Existing CCS Protocol for permanence certification
 - Allows crediting for CCS/DAC projects
- Need to start today to deploy and scale in this decade

Policy-based Role of Carbon Dioxide Removal

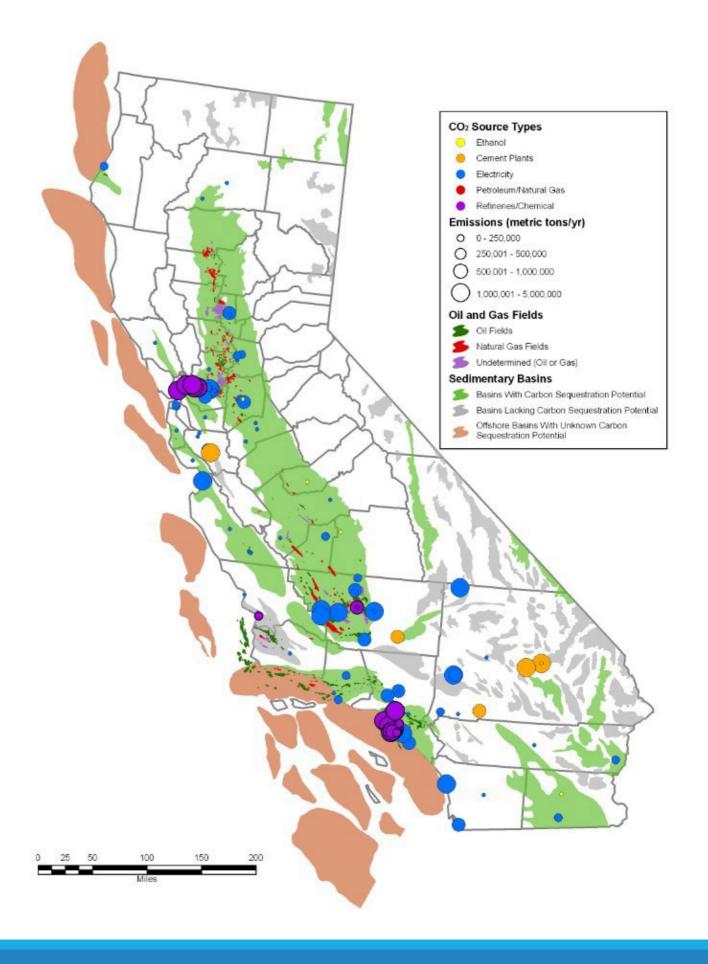
- Governor Newsom has called for:
 - 20 MMT CO2e removal by 2030
 - 100 MMT CO2e removal by 2045
- 2022 Scoping Plan showed need for CCS/CDR to achieve AB 1279

Nature-based solutions, in addition to mechanical, are necessary

Storage & Utilization

- Storage geologic sequestration in underground reservoirs (see image)
 - Onshore estimated 149 843 Gt storage potential in CA (mostly saline reservoirs)
 - Offshore estimated 100 Gt storage potential
 - Enhanced oil recovery (EOR) prohibited in CA under SB 905
- Utilization
 - Cement and concrete
 - Chemicals
 - Fuels
 - Materials

Carson City Great Basin Orinda Livermore Basin La Honda Southern San Joaqui Cuyama Los Angeles Salton


Image source: Getting to Neutral: Options for Negative Carbon Emission in California, January 2020, LLNL

Locations of CO₂ Sources and Geologic Reservoirs

 Many CO₂ emission sources in the Bay Area, Central Valley, and LA Area are in close proximity to geologic sequestration reservoirs

Image source:

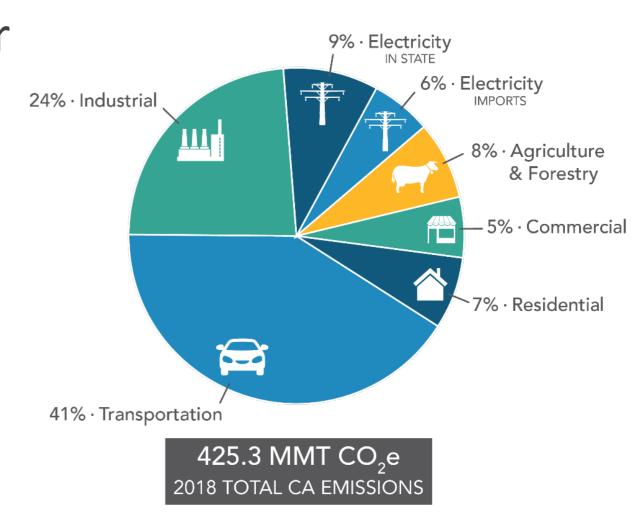
http://gif.berkeley.edu/westcarb/images/maps/CA basins status point.jpg

California Incentives for CCS and CDR

- CARB Low Carbon Fuel Standard program provides crediting opportunities for carbon dioxide capture from alternative fuels production and direct air capture with geologic sequestration
 - Requires Permanence Certification under CARB's Carbon Capture and Sequestration Protocol and fuel pathway/project approval
- California Energy Commission Carbon Removal Innovation Support Program (CRISP) provides grant funding for direct air capture technologies that use mechanical and chemical processes
 - Of the up to \$18M available in grant funds, \$16.3M has already been committed:
 - \$3.3M in federal cost-share projects to support research on direct air capture hubs
 - \$13M in proposed awards for R&D and demonstration projects
 - Funds must be encumbered by 7/30/2027 and spent by 7/30/2030
 - Projects benefitting petroleum or gas production, processing or refining, such as enhanced oil and gas recovery, are not eligible

Carbon Capture and Sequestration Protocol: Main Elements

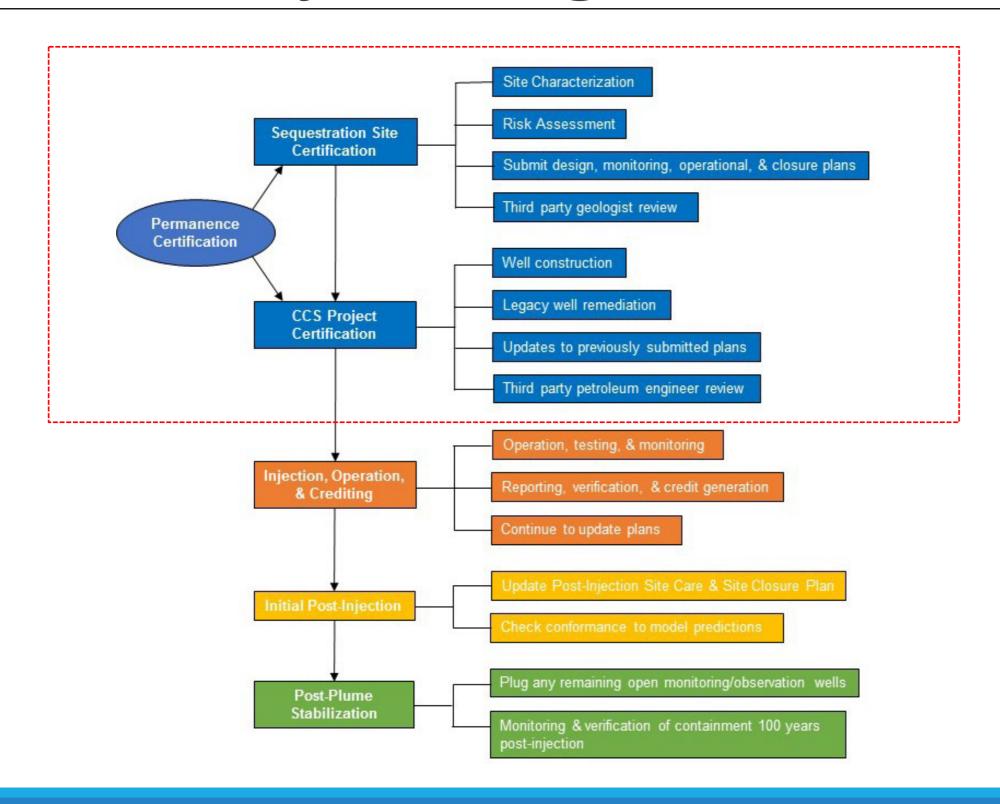
- Main sections of CARB's CCS Protocol
 - Section A: Applicability eligible reservoirs
 - Section B: Accounting methodology for CCS projects under LCFS - how GHG reductions are estimated
- Section C: Permanence requirements ensure safe, permanent sequestration of injected CO2



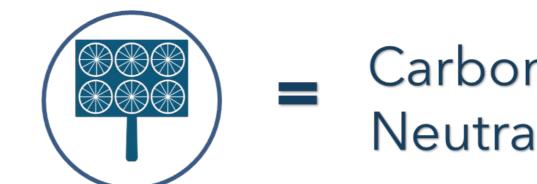
Carbon Capture and Sequestration Protocol under the Low Carbon Fuel Standard

August 13, 2018

Carbon Capture and Sequestration Project Eligibility


- Types of CCS projects that may be certified for LCFS credit generation:
 - Low carbon fuel pathways (e.g. ethanol or biogas)
 - Refinery investment (e.g., steam reforming)
 - Innovative crude (e.g., co-gen at oilfield)
 - Direct air capture projects
- Eligible reservoirs (all on-shore)
 - Saline formations
 - Depleted oil and gas reservoirs
 - Enhanced oil recovery reservoirs

Source: 2020 Edition, California Greenhouse


Gas Emission Inventory: 2000-2018

CCS Project Stages & Protocol Provisions

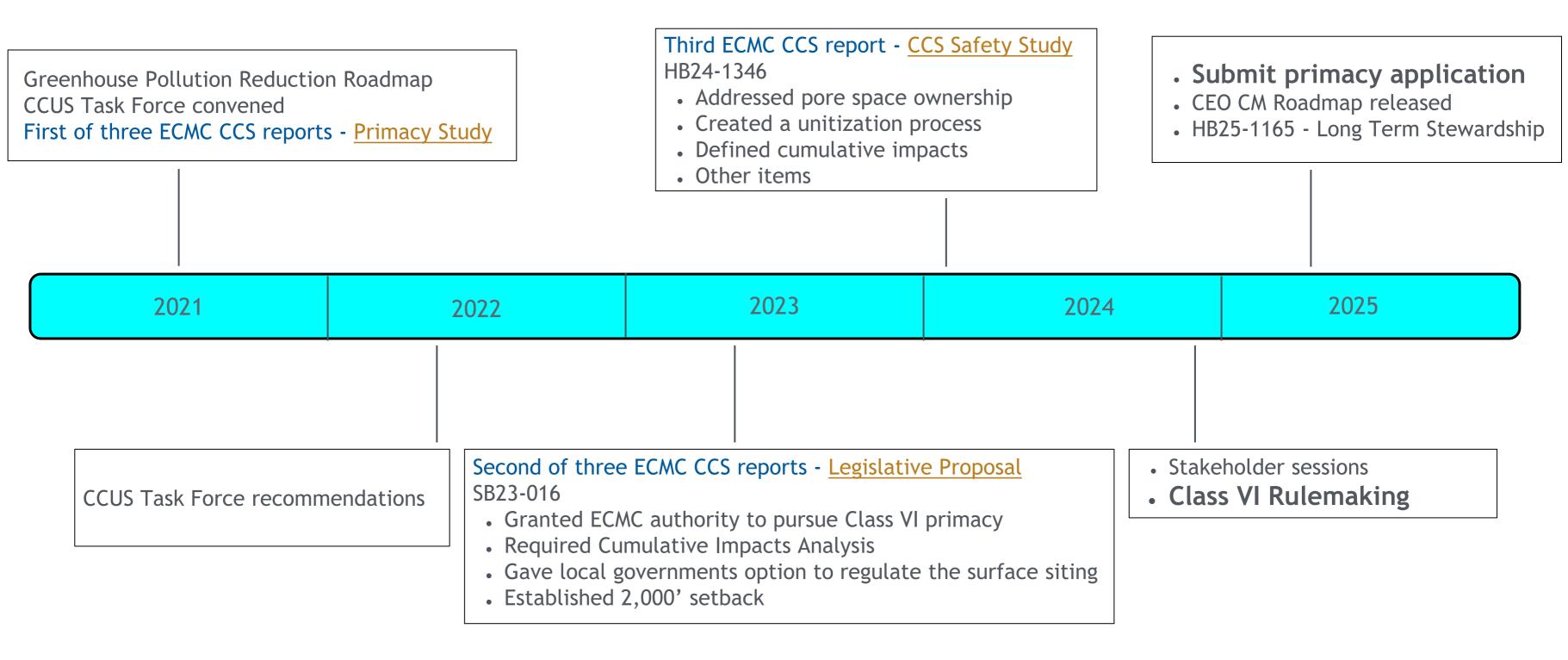
Overview of CARB SB 905 Responsibilities

- Establish a Carbon Capture, Removal, Utilization, and Storage (CCUS) Program
- Adopt protocols to support additional CCUS and CDR approaches
- Adopt CCUS/CDR regulations, including for a voluntary-use unified permit application, financial risk management, and monitoring requirements for project operators
- Support transparency, via a public database of projects and public reporting

2025 Update on SB 905 Implementation

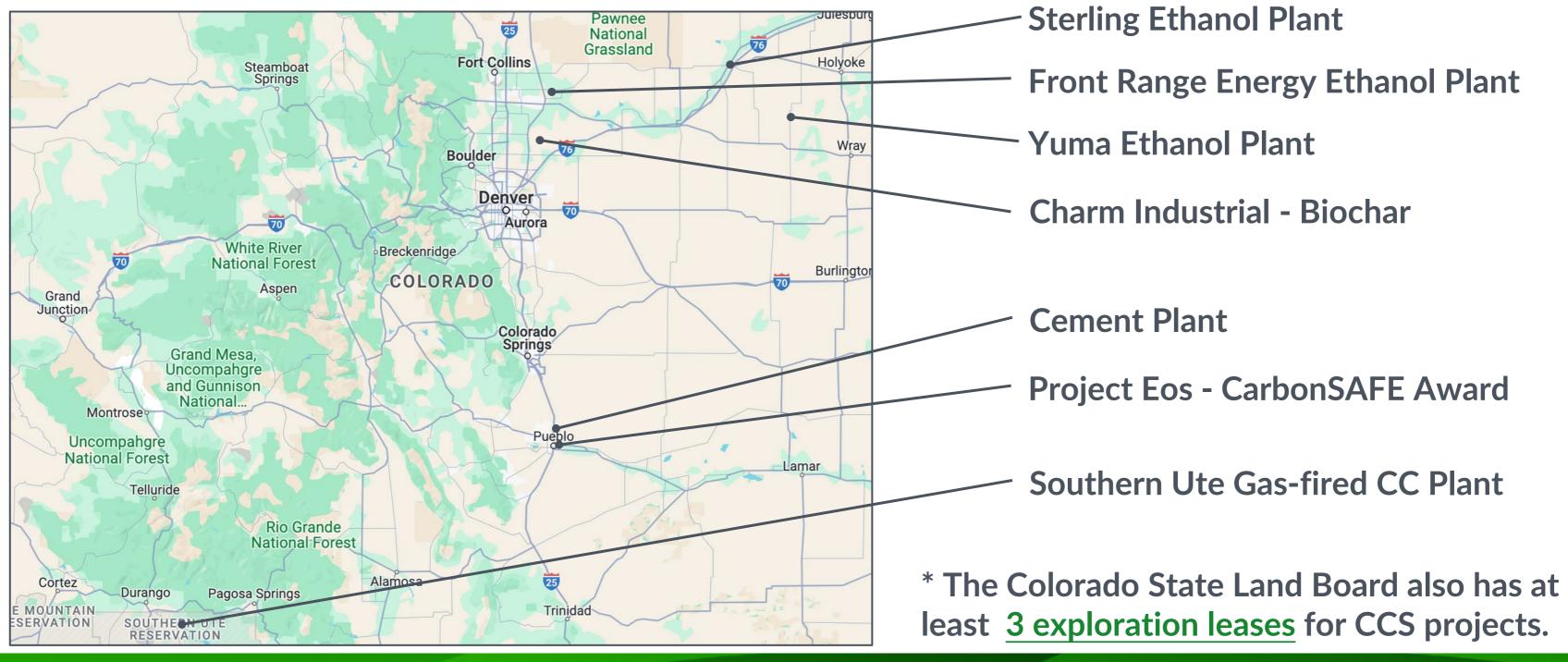
- Conduct CCUS/CDR technology assessment (contract)
- Collect CCUS/CDR permit data requirements and create library (contract)
- Best practices for community action plan development (contract)
- State of California control-agency approvals for the permit portal IT project
- Information collection to support regulatory development
- Public workshop held in February 2025, comments received and posted

Progress in Establishing California Projects


- First commercial DAC facility operating in Tracy
- First CO2 Class VI injection permit awarded to Kern County project
- Four DOE DAC hub awards: feasibility and engineering studies

Project Operator	Project Location	Award Type	DOE Funding
CarbonFrontier/Aera	Kern County	Feasibility study	\$2.8 million
Chevron	Kern County	Feasibility study	\$3 million
California Resources Corporation	Kern County	FEED study	\$11.8 million
University of California	Southern San Joaquin Valley	Feasibility study	\$3 million

Resources


- CARB, 2018: <u>Carbon Capture and Sequestration Protocol</u>
- CARB, 2018: <u>Low Carbon Fuel Standard regulation</u> (CCS provisions are in section 95490 beginning on page 186
- SB 905 Carbon Sequestration: Carbon Capture, Removal, Utilization and Storage Program:
 - https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=20212022 0SB905

ECMC Class VI Timeline

CCS and CDR Projects

Currently in Development

Carbon Management Roadmap

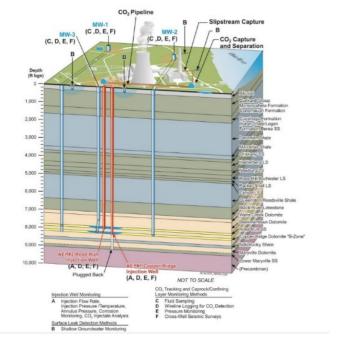
HB23-1210

"Identify the carbon management, climate, and economic opportunities available in Colorado that best draw on Colorado's natural resources, industry, talent, labor force, and economic development capabilities."


Key Findings & Themes

The final, 250-page Carbon Management Roadmap makes 68 recommendations, spanning 15 state agencies.

– Key themes:


- Durability & supporting high-quality carbon removal
- Community education & project transparency
- Strategic market support to enable deployment

WV CCS Policy Timeline

20+ Years of Carbon Storage Research in Appalachia

2003-2011

2022

2023

2024

2025

AEP Mountaineer CCS Test Wells

Permitted by WVDEP as Class V Experimental Tests; 27k tonnes CO₂ injected in Copper Ridge Dolomite + 10k into Rose Run Sandstone HB 4491 clarifies policy; UIC revisions add Class VI

Pore space owned by surface estate, cannot be severed, may be leased. 75% owners in unit; long-term liability transfers to state 10 yrs. from closure

SB 161 & 162; Class VI Primacy App at EPA; ARCH2 Hub

State gains authority to purchase land & lease public pore space; Hydrogen projects increase need for CCS UIC Rules Bill Passes; Awaiting Primacy Determination

HB 5045 finalizes
regulations; increases
time for Certificate of
Completion to 50 yrs.
w/waiver possibility;
GES and DEP sign MOA
for Class VI permit
reviews

CarbonSAFE projects
ongoing/announced; Class VI
Primacy application approved
by EPA; Fidelis and Tenaska
permits in review

December 2024

Public

Comments

Sun	Mon	Tue	Wed	Thu	Fri	Sat		Sun	1
1	2	3	4	5	6	7			
8	9	10	11	12	13	14		5	
15	16	17	18	19	20	21		12	
22	23	24	25	26	27	28		19	
FEDERAL F		and the same of th		Commer	nts Receiv	ved _	Doc	ument C	3

9.052

January 2025

	,	Sun	Mon	Tue	Wed	Thu
7					1	
						(
14		5	6	7	8	1
21		12	13	14	15	
28		19	20	21	22	F
	_				29	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Doc	ument C	ommen	ts (53)		l

Retrical Plates

Retric

EPA Issues Final Rule to Grant Primacy to West Virginia for Class VI Wells | EMLF

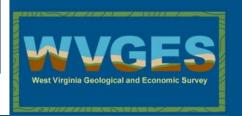
On January 17, 2025, the U.S. Environmental Protection Agency (EPA) issued a final rule under the Safe Drinking Water Act (SDWA) to grant primacy to West Viriginia for Class VI wells. Class VI wells are injection wells used for the disposal of CO₂ (carbon dioxide) in carbon capture and storage (CCS). The final rule had not yet been published by the time Donald Trump was inaugurated on January 20, 2025, but new EPA Administrator Lee M. Zeldin signed the final rule on February 18, 2025, signifying the Trump administration's intent to follow through on publishing the final rule in the Federal Register. The grant of primacy will be effective thirty days after the rule is published in the Federal Register.

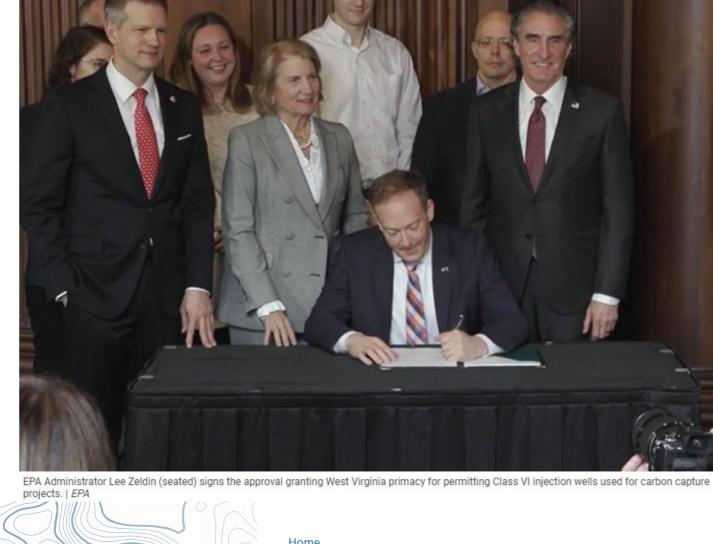
EPA Gives W.Va. Primacy for Permitting CCS Injection Wells

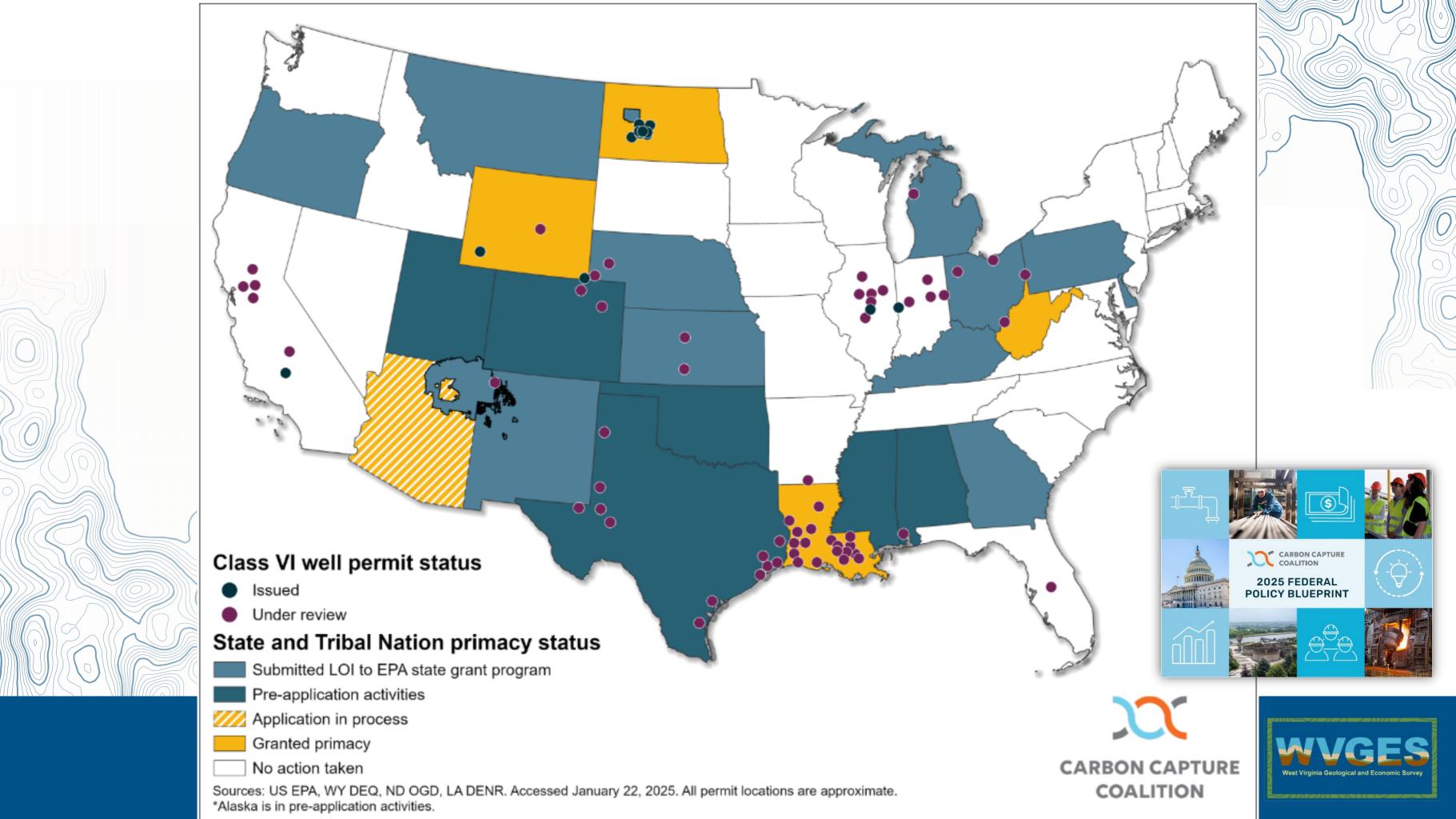
Zeldin Hails Approval as Example of 'Cooperative Federalism' with States

GOVERNOR MORRISEY AND WVDEP SECRETARY WARD ANNOUNCE EPA'S APPROVAL OF WEST VIRGINIA'S CLASS VI WELL PRIMACY APPLICATION

January 21, 2025


West Virginia becomes just the fourth state in the country to achieve this milestone.


CHARLESTON, WV - Governor Patrick Morrisey and West Virginia Department of Environmental Protection (WVDEP) Cabinet Secretary Harold Ward today announced the U.S. Environmental Protection Agency (EPA) has officially granted Class VI Underground Injection Control (UIC) primacy to West Virginia. Class VI primacy gives the state authority to oversee the permitting and regulation of Class VI wells, which are used to inject carbon dioxide (CO2) deep underground for long-term storage—a vital component of carbon capture and storage (CCS) technology.


West Virginia becomes just the fourth state in the country to achieve this milestone.

"West Virginia continues to lead the nation in energy innovation," said Governor Morrisey. "Securing Class VI primacy opens the door for new investment and job creation in our energy, manufacturing, and petrochemical sectors, while significantly reducing emissions. I commend our WVDEP staff for their tireless efforts to help secure this approval, as well as the members of the West Virginia Legislature and the Attorney General's Office for their work in establishing a legal framework and ensuring the state's authority to enforce Class VI regulations.

Governor Morrisey and WVDEP Secretary Ward Announce EPA's Approval of West Virginia's Class VI Well Primacy Application

PUBLIC LANDS

WEST VIRGINIA

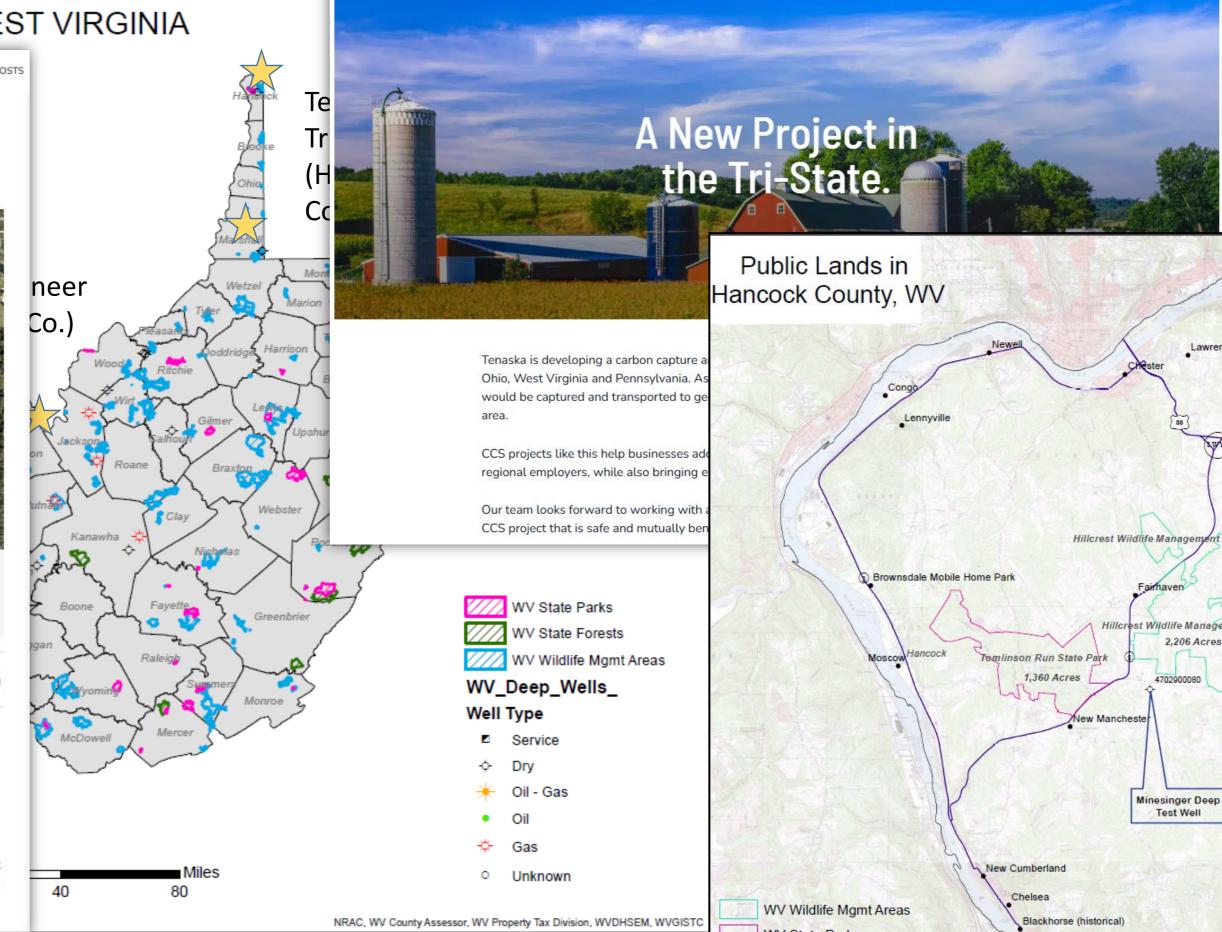
Work Starts on \$2B West Virginia Hydrogen Plant to Power Data Megasite

By Mary B. Powers

Planned \$2B West Virginia complex is set to include four blue hydrogen production plants using biomass and natural gas to power an associated data center megasite

Image: Fidelis New Energy

September 20, 2023



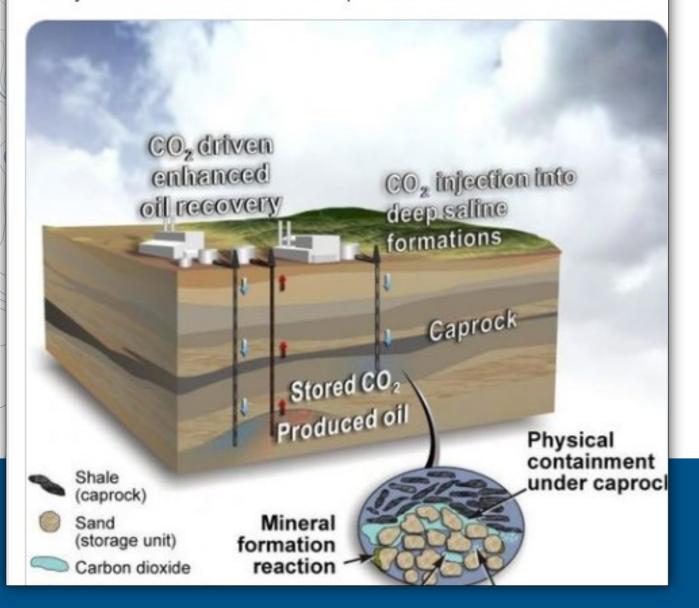
Houston-based Fidelis New Energy has started development and launched permitting for a \$2-billion hydrogen production plant in West Virginia. It will power an associated data center megasite as well as industrial manufacturers, transportation companies and utilities. The energy company said the Mountaineer GigaSystem in Mason County would produce blue hydrogen from natural gas and store CO2 emissions underground on state-owned property, with its first phase to open in 2028.

Fidelis has finalized with state officials an operating agreement for sequestration pore space and targeted storage capacity. It selected Battelle Carbon Services in early September to drill and collect test well data and submit sequestration permit applications, and has a letter of intent with Babcock & Wilcox to evaluate, develop and deliver four hydrogen production plants at the site using biomass and natural

TRI-STATE CCS HUB

BUCKEYE • REDBUD • OAK GROVE

SB 162 (2023) vs. SB 627 (2025)



West Virginians for Public Lands

January 16 · 🚱

Carbon capture might be a good idea... BUT this bill SB 162 whizzed through the Senate with no hearings, no committees, no debate, no public input. WV DNR can lease out your public lands to inject carbon in the "pore area" (that's where ground water is stored in the soil!) under YOUR public lands.

Why the rush? We have questions about the impacts on our state forests, wildlife management areas, or other public lands. New roads? Heavy truck traffic? Noise from the process? C... See more

WVEC Action Alert Protect WV State Parks – Reject SB 627!

WV Rivers Coalition March 4, 2025 - Action Alerts - Comments

From our Partners at WV Rivers Coalition

Two years ago, we secured an important victory by protecting our State Parks from underground carbon sequestration. Now, with the introduction of Senate Bill 627, these protections are at risk.

If passed, SB 627 would allow carbon sequestration in our State Parks, putting our beloved public lands and recreational spaces in jeopardy.

Imagine the peaceful atmosphere of Watoga disturbed by constant truck traffic, or the natural beauty of Blackwater Falls interrupted

Our State Parks are a sanctuary — places where we can hike, explore, and experience nature in its purest form. We cannot sacrifice these irreplaceable spaces for undefined economic development.

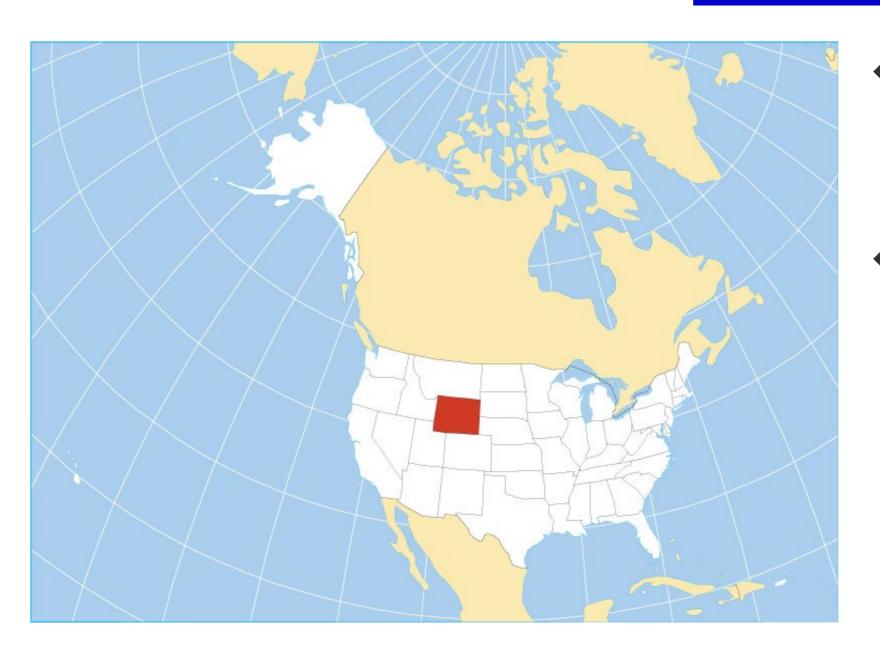
We need your help today. Please get in touch with the members of the Senate Committee on Economic Development and urge them to reject SB 627. Let them know you value our State Parks as they are — wild and wonderful.

Thank you for standing with us to protect the heart of West Virginia's natural beauty.

Take action now!

STATE UPDATES - WYOMING

2025 AMERICAS FORUM ON CARBON CAPTURE & STORAGE


Hosted by the Global CCS Institute & Embassy of Canada

April 8, 2025

<u>Presented by:</u> Lily R. Barkau, P.G., Water Quality Division, Groundwater Section Manager

WYOMING DEPARTMENT OF ENVIRONMENTAL QUALITY

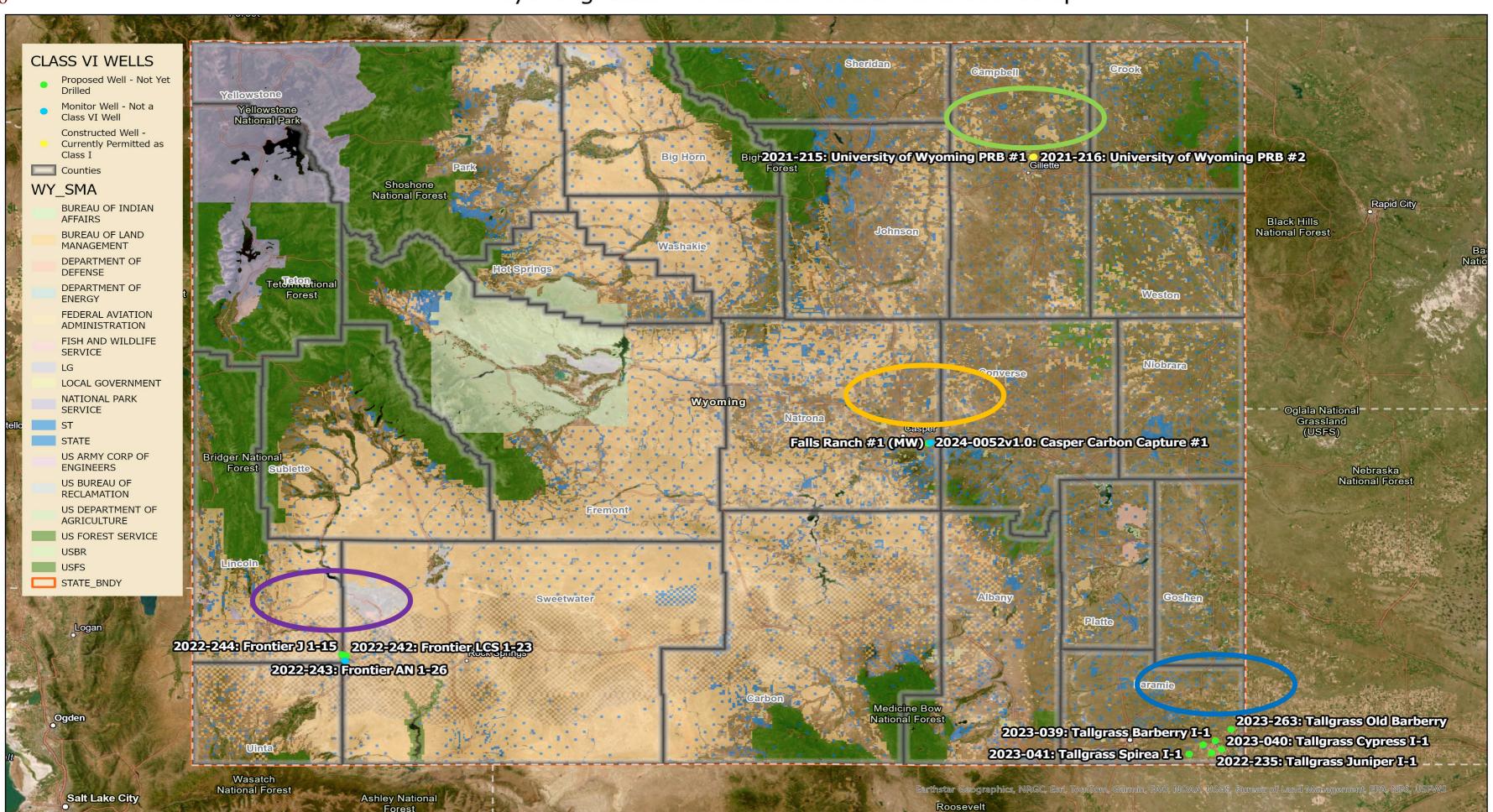
Overview

- Wyoming Carbon Sequestration Regulations
- Project Updates Challenges,
 Successes, and Opportunities

Wyoming's Geologic Sequestration History

- 2007 Carbon Sequestration Working Group
- 2008 2023 Statutes and regulations in place for permitting, unitization, pore space, the title of CO2, longterm stewardship, and transfer of liability. The Federal UIC program does not speak to unitization, pore space, the title of CO2, long-term stewardship, and liability
- Wyoming received primacy of UIC Class I through V wells in 1983. Primacy of UIC Class VI wells was issued in September 2020.

Class VI Permit Applications


Current Status Project Challenges

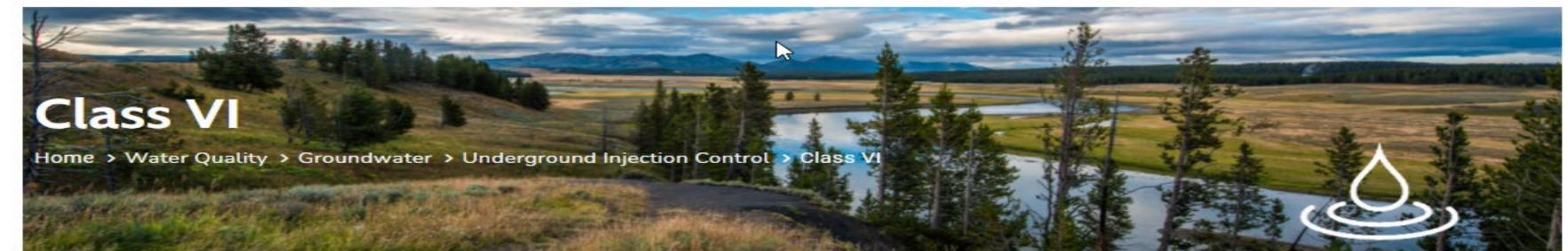
- Informational Meeting
- Pre-application Meeting
- Application
- Completeness/Technical Adequacy
 Review
- Public Notice Draft Permit
- Permit to Construct

- Well Construction and Pre-injection
 Testing
- Permit Modification Application
- Completeness/Technical Adequacy
 Review
- Public Notice Draft Permit
- Unitization Order (if applicable)
- Permit Authorization to Inject

Summary

- Challenges outside of regulatory framework currently exists:
 - Project vs. Individual Well Permitting continue to evaluate permitting efficiencies
 - Pore Space: Private, State, and Federal Land Ownership MOU with BLM on roles, responsibilities, and collaboration
 - Interstate Permitting Collaboration MOU with neighboring states to address

Notification and Sharing Information	Permit to Construct, Stratigraphic or Science Wells, Authorization to Inject
Property Rights/Pore Space; Unitization	Financial Assurance
Emergency and Remedial Response	Cross-boundary Infrastructure
Long-term Stewardship	


Aquifer Exemption

me Resources ~ Divisions ~ Calendar News Q

Report a Spill

Electronic Documents Submittal Forms and Guidance

GEM Database Rules and Regulations

Abandoned Mine Land

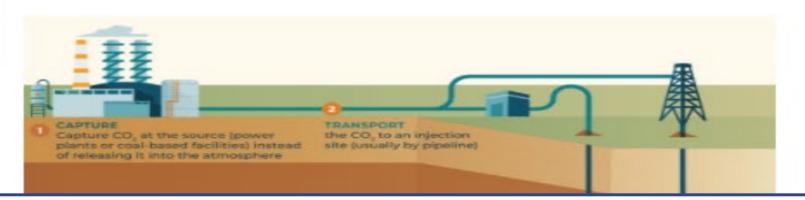
Administration

Air Quality

Industrial Siting

Land Quality

Solid & Hazardous Waste


Water Quality

*

Contact

Class VI Carbon Capture, Utilization & Storage (CCUS) refers to the process in which carbon is captured from industrial processes and either utilized by turning the carbon into a new product or stored by injecting the carbon into a storage site, usually underground in a geologic formation.

Click here to Sign up for the Class VI listserv

Related Programs

Underground Injection Control

Class I

Class V

Class VI

Public Notices

BREAK

We'll be back at 3:30pm ET

Next session

ENABLING POLICIES AND MARKET MECHANISMS

Jessie Stolark Isabela Morbach

Cofounder and Director at CCS

Brasil

President and CEO at **Knowledge Centre**

James Fann

International CCS

Noah Deich

Climate Fellow at Stripe

Poh Boon Ung

+ MODERATOR + General Manager, **Business Development Global CCS** Institute

ENABLING POLICIES AND MARKET MECHANISMS

Jessie Stolark Isabela Morbach

Executive Director at

Carbon Capture

Coalition

Cofounder and Director at CCS

Brasil

President and CEO at International CCS Knowledge Centre

James Fann

Noah Deich

Climate Fellow at **Stripe**

Poh Boon Ung

+ MODERATOR +
General Manager,
Business Development
Global CCS
Institute

CLOSING KEYNOTE



Justin Riemer

CEO at Emissions Reduction Alberta

THANK YOU

Take our survey!

Scan this QR code for a simple 5 question survey to help us improve next year's forum

