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エネルギーとCO2排出量の現状第５次エネルギー基本計画（2018年7月閣議決定）

第３章 2050年に向けたエネルギー転換・脱炭素化への挑戦

2050年シナリオに伴う不確実性、先行する主要国情勢から得られる教訓、
我が国固有のエネルギー環境から判断し、再生可能エネルギーや水素・
CCS、原子力など、あらゆる選択肢を追求する「エネルギー転換・脱炭素化
を目指した全方位での野心的な複線シナリオ」を採用する。
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CCUS（Carbon Capture and Utilization/Storage）
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火力発電
(化石燃料)

Carbon

CCU
《例》
・メタネーション
CO2＋4H2

→CH4＋2H2O
・人工光合成
・・・・

CCS
《例》
・CO2-EOR
・帯水層貯留
・ハイドレート貯留

CO2の価値 CO2処理量

CCU 大 小

CCS 小 大

石炭・バイオマス混焼
のCCS（BECCS）

↓
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（ネガティブエミッション）
を可能にする
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分離回収

火力発電所

陸域
圧入

海域
圧入

遮へい層

CO2

CO2

海域
輸送

貯留層
貯留層

地中貯留
（帯水層貯留）

陸域
輸送

地中貯留
（帯水層貯留）

遮へい層

化石燃料（石炭等）を使って発電しても、CO2を大気中に排出しない

CCS （Carbon Capture and Storage CO2回収・貯留）

帯水層貯留

CCSのイメージ（METI 「CCS2020」を参考に一部修正） 5



革新的技術開発世界の主要なCCSプロジェクト（帯水層貯留）

Gorgon 2019.8～ 豪州 帯水層 340万
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日本の帯水層貯留のポテンシャル

出典：環境配慮型CCS実証事業 貯留技術について（CCUSの早期社会実装会議）2019/3/5



日本の帯水層貯留のポテンシャル

8出典：環境配慮型CCS実証事業 貯留技術について（CCUSの早期社会実装会議）2019/3/5

資源量
resources

埋蔵量
reserves

資源分野



✓ 第４次エネルギー基本計画（2014年4月閣議決定）
2020年頃のCCS技術の実用化を目指した研究開発や、CCS商用化の目途等も考慮
しつつできるだけ早期のCCS Ready 導入に向けた検討を行う。

✓ 第５次エネルギー基本計画（2018年7月閣議決定）
2050年の80%削減（脱炭素化）を目指した「全方位での野心的な複線シナリオ」を
採用する。

帯水層貯留

出典：2016/11/24 METIのCCS政策について

CCS（CO2地中貯留）に関する国の施策

9



石炭
33%

天然ガス
37%

石油
6%

原子力
5%

再エネ
11%

石炭
26%

天然ガス
27%

石油
3%

原子力
20-22%

再エネ
13-15%

時期 CO2排出削減目標 電源構成比率

化石エネ76%

化石エネ56%

✓ 再エネ どこまで伸ばせる？
✓ 原子力 どこまで伸ばせる？
✓ 化石エネ＋CCS ？

日本のCO2排出削減目標と電源構成

水力
8%

水力
9%

2018
実績

（BP統計）

2030
中期目標

温室効果ガス
2013年比

26%削減

2050
長期目標

温室効果ガス

80%削減
を目指す
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脱炭素シナリオをどう描くか？



貯留サイトの確保

《問題意識》

帯水層貯留だけで足りるか？

地中貯留サイトの
選択肢を広げる必要があるのでは？

現時点では、
ロンドン議定書により

海洋隔離は
禁止されている

長期目標：2050年 GHG 80%削減（発電部門ゼロ）
《仮定》
電源構成：水力 10%、再エネ 40%、原子力 20%、

CCS付き火力 30%  

CO2処理量
100万ton-CO2/年の貯留層
（Quest、Illinoisと同等）

が何か所必要か？

発電部門で排出される
CO2の30% を処理する

1.5億ton-CO2/年

日本国内で処理する場合

150か所

発電部門

産業部門

運輸部門
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出典：JCCCA
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油ガスとメタンハイドレートの生産概念

海洋エネルギー・鉱物資源開発計画（平成25年12月24日）資料より
https://www.meti.go.jp/committee/sougouenergy/shigen_nenryo/pdf/report01_01_00.pdf

キャップロック
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海域におけるメタンハイドレートの賦存形態（参考情報）

BSR：Bottom Simulating Reflector 海底模擬反射面

海洋エネルギー・鉱物資源開発計画（平成25年12月24日）資料より
https://www.meti.go.jp/committee/sougouenergy/shigen_nenryo/pdf/report01_01_00.pdf

BSR：Bottom Simulating Reflector 海底模擬反射面
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帯水層貯留とCO2ハイドレート貯留の違い

キャップロック

CO2ﾊｲﾄﾞﾚｰﾄ
生成(ｼｰﾙ層)

→ CO2圧入

→ CO2圧入

CO2

CO2ハイドレート貯留の特徴（帯水層貯留と比較して）
✓ キャップロックが不要（ただし、温度圧力条件が必要）
✓ 貯留層が浅いため圧入坑井の長さが短い

帯水層
貯留

CO2ﾊｲﾄﾞ
ﾚｰﾄ貯留
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実証研究段階 基礎研究段階



4.5MPa以上

10℃以下

CO2は
温度：31℃以上
圧力：7.4MPa以上
で超臨界状態となる

CO2は水が存在する中で、

温度10℃以下、圧力4.5MPa（水深450m）以上で

水分子に取り囲まれてハイドレートを生成する。

包接水和物（Clathrate Hydrate 

ハイドレート）は、水分子が水素
結合で構成する12面体の格子内
にガス分子が取り込まれた構造を
もつ。

CO2ハイドレートとは？
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出典：酒井均、他（1990）、「しんかい2000」による伊是名海穴熱水系の地球化学的研究 ー第413回及び第415回
潜航報告、及び第424回潜航で採取した二酸化炭素液泡と包接化合物について、「しんかい2000」研究シンポジウム報告書

CO2ハイドレートは自然界に存在するのか？

沖縄トラフ（水深1,500m）の
海底面付近でCO2ハイドレート
の存在を確認
（Sakai,1990, Science）

↓
海底面下でハイドレートが形成
され堆積物の空隙を埋めることで
液体CO2の湧出を抑制する
「液体CO2の貯留モデル」を提案

↓
理学の世界では、
CO2ハイドレートの存在と
そのシールメカニズムについての
理解が進んでいる



温度10℃以下、
圧力4.5MPa以上
でCO2はハイドレート化する

海面

海底 （450m以深）海底

CO2圧入位置（ハイドレートシール層の下）
（液体CO2の圧入）

CO2圧入位置（キャップロックの下）
（超臨界CO2の圧入）

貯留層

0m

1000

500

キャップロック
（遮蔽層）

ハイドレート
シール層

海域

貯留層

海面

海域

「帯水層貯留」と「ハイドレート貯留」の違い

帯水層貯留 ハイドレート貯留

CO2がハイドレート化して
孔隙を目詰まりさせ

シール性能を有するようになる
↓

キャップロック（遮蔽層）
が不要である
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Argo Float ID:2903187

2018年2/4-3/1の水温変化

水深 1,000m

水温 5℃以下

水深 2,000m

水温 2.5℃程度

Argo Float ID:2902991

2018年1/9-3/5の水温変化

水深 1,000m

水温 5℃以下

水深 2,000m

水温 2.5℃程度

Argo Float ID:2902479

2018年1/25-3/6の水温変化

水深 1,000m

水温 5℃以下

水深 2,000m

水温 2.5℃程度

Argo Float ID:2902969

2018年1/5-3/6の水温変化

水深 1,000m

水温 5℃以下

水深 2,000m

水温 2.5℃程度

Argo Float ID:2900612

2018年1/5-3/8の水温変化

水深 400m

水温 1℃程度

① ②

③ ④ ⑤

④
③②

⑤

①

Argo Float

日本周辺海域において、CO2ハイドレートは生成可能か？

19



Sloan：Clathrate Hydrates of Natural Gases, 2nd Ed., 1997.のデータを用いて作図

日本周辺海域において、CO2ハイドレートは生成可能か？

20

日本周辺の海底部
の温度・圧力は

CO2ハイドレートの
生成条件を満たす



★

②CO2ハイドレート（シール層）

③液体CO2 の貯留

①液体CO2 の圧入

（例）
太平洋の水深1000mの場合

海底面の水温は 5℃

CO2ハイドレート生成領域
TP seal layers

② CO2が密度差により上方へ移動し、
TP seal layers へ到達したところ
でハイドレートを生成し、地層の孔
隙内を充填して自己シール性能を
有するようになる

CO2圧入・貯留領域
CO2 injection/storage layers

① 液体CO2の圧入
→浸透性が確保され、目詰まり
（閉塞）は生じない

③ CO2ハイドレート（シール層）の
下位にCO2が液相の状態で貯留
できる

地温勾配
3℃/100mと仮定

CO2ハイドレート生成領域

温度10℃以下、
圧力4.5MPa以上
でCO2はハイドレート化する

CO2ハイドレート貯留CO2ハイドレート貯留の概念（太平洋側）
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CO2ハイドレート貯留CO2ハイドレート貯留の概念（日本海側）

（例）
日本海の水深1000mの場合

海底面の水温は 1℃

★

②CO2ハイドレート（シール層）

③液体CO2 の貯留

①液体CO2 の圧入

地温勾配
3℃/100mと仮定

CO2ハイドレート生成領域

温度10℃以下、
圧力4.5MPa以上
でCO2はハイドレート化する

CO2ハイドレート生成領域
TP seal layers

② CO2が密度差により上方へ移動し、
TP seal layers へ到達したところ
でハイドレートを生成し、地層の孔
隙内を充填して自己シール性能を
有するようになる

CO2圧入・貯留領域
CO2 injection/storage layers

① 液体CO2の圧入
→浸透性が確保され、目詰まり
（閉塞）は生じない

③ CO2ハイドレート（シール層）の
下位にCO2が液相の状態で貯留
できる
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★

②CO2ハイドレート（シール層）

③液体CO2 の貯留

①液体CO2 の圧入

（例）
太平洋の水深1000mの場合

海底面の水温は 5℃

地温勾配
3℃/100mと仮定

CO2ハイドレート生成領域

温度10℃以下、
圧力4.5MPa以上
でCO2はハイドレート化する

CO2ハイドレート貯留CO2ハイドレート貯留の研究課題

24

CO2ハイドレート生成領域
TP seal layers

シール性能評価

シミュレーション
室内試験

CO2圧入・貯留領域
CO2 injection/storage layers

貯留性能評価
（injectivity/capacity）

シミュレーション



★

②CO2ハイドレート（シール層）

③液体CO2 の貯留

①液体CO2 の圧入

（例）
太平洋の水深1000mの場合

海底面の水温は 5℃

地温勾配
3℃/100mと仮定

CO2ハイドレート生成領域

温度10℃以下、
圧力4.5MPa以上
でCO2はハイドレート化する

CO2ハイドレート貯留CO2ハイドレート貯留の研究課題

CO2ハイドレート生成領域
TP seal layers

シール性能評価

シミュレーション

室内試験

CO2圧入・貯留領域
CO2 injection/storage layers

貯留性能評価
（injectivity/capacity）

シミュレーション
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室内試験のデータは
今後、論文発表する
ため、配付資料から

削除させていただきます



★

②CO2ハイドレート（シール層）

③液体CO2 の貯留

①液体CO2 の圧入

（例）
太平洋の水深1000mの場合

海底面の水温は 5℃

地温勾配
3℃/100mと仮定

CO2ハイドレート生成領域

温度10℃以下、
圧力4.5MPa以上
でCO2はハイドレート化する

CO2ハイドレート貯留CO2ハイドレート貯留の研究課題

CO2ハイドレート生成領域
TP seal layers

シール性能評価

シミュレーション
室内試験

CO2圧入・貯留領域
CO2 injection/storage layers

貯留性能評価
（injectivity/capacity）

シミュレーション
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1,000

1,500

2,000

5 15 20 25 3010 35

CO2：ハイドレート生成領域

500

0

★

★

地温勾配
3℃/100mと仮定

Sea flor （海底面）

▼

太平洋側
水深1,000mの水温は5℃以下

Temperature ℃

D
e
p
th

 f
ro

m
 s

e
a
 s

u
rf

a
c
e
  
/m

Sea surface （海面）

CO2は温度10℃以下、圧力4.5MPa以上で
ハイドレート化する

A点

20℃
15MPa

B点
35℃

20MPa

温度31℃以上
→ CO2は超臨界

圧入点 温度 圧力 CO2の密度
（kg/m3）

CO2の粘度
（mPa・s）

CO2の相状態

Ａ点（海域） 20℃ 15.0MPa 900 0.092 液体

Ｂ点（海域） 35℃ 20.0MPa 850 0.084 超臨界

Ｃ点（陸域） 48℃ 10.8MPa 520 0.038 超臨界

貯留性能評価（シミュレーションの条件設定）
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20年後のCO2飽和度コンター（断面図）

Case-A1

Case-B1

Case-C1

A点：
海底下貯留層に
液体CO2圧入

B点：
海底下貯留層に
超臨界CO2圧入

C点：
陸域貯留層に
超臨界CO2圧入

A点の温度圧力条件
20℃、15MPa

B点の温度圧力条件
35℃、20MPa

C点の温度圧力条件
48℃、10.8MPa

貯留性能評価（シミュレーションの結果概要）

JpGU2020発表 鳥羽瀬孝臣、他 CO2ハイドレート貯留における液体CO2の圧入性能評価より

海底下の貯留層において、「A点での液体CO2圧入」と「B点での超臨界CO2圧入」
では、CO2プルーム挙動に大きな違いがない。→液体CO2の圧入性能は確保される
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CO2ハイドレート貯留の研究課題（今後の研究の進め方）

評価項目 検討方法

① CO2ハイドレート生成領域の

シール性能評価
✓ シミュレーション
✓ 室内試験

② CO2圧入・貯留領域の

貯留性能評価
（injectivity/capacity）

✓ シミュレーション

③ CO2ハイドレート貯留の

ポテンシャル評価
✓ 日本周辺海域の温度・圧力条件適合

エリアを抽出
✓ メタンハイドレートの類似性に基づき、

地質適合エリアを抽出
✓ ②のシミュレーションにより、capacityの

評価→全体集計（ポテンシャル評価）

④ CO2ハイドレート貯留の

経済性評価
✓ ②のシミュレーションにより、injectivityの

評価
✓ 圧入坑井の諸元・配置等を設定して

コスト試算（経済性評価）

様々な条件を設定
して継続実施予定
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おわりに

30

2050年の80%削減を目指して

CO2ハイドレート貯留帯水層貯留

日本周辺海域において
経済合理性を有した十分な
貯留ポテンシャルを確保したい

あと30年しか残っていない



CO2 hydrate seal

Liquid CO2
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