Filter by

Date +
Topic +
Organisation +

[ Clear Filtering ]

Publications, Reports & Research

Resources

Publications, Reports & Research

Our publications, reports and research library hosts over 500 specialist reports and research papers on all topics associated with CCS.

Filter by

[ Clear Filtering ]

The Carbon Capture and Storage Readiness Index 2018: Is the world ready for carbon capture and storage?
The Carbon Capture and Storage Readiness Index 2018: Is the world ready for carbon capture and storage?

16th October 2018

Topic(s): Carbon capture, Economics, Law and regulation, Policy, Use and storage (CCUS)

Collectively, our three Indicator Reports 2018 form a further, criteria-based assessment known as the CCS Readiness Index, or CCS-RI. The 2018 CCS-RI examines over 50 countries using 70 discrete criteria and enables a comparative assessment of countries globally.

Clear from the 2018 assessment is that greater effort is required to deploy CCS at the scale necessary to meet climate change mitigation ambitions.

Download

CCS Policy Indicator (CCS-PI)
CCS Policy Indicator (CCS-PI)

16th October 2018

Topic(s): Carbon capture, Economics, Law and regulation, Policy, Project financing, Use and storage (CCUS)

Government policy, given effect through law and the allocation of public resources, is critical to achieving climate targets. It plays a material role in determining the return on investment for any climate mitigation technology making confidence in government policy a pre-requisite of investment.

The CCS-PI tracks the development of government policy to accelerate the deployment of CCS as an essential climate mitigation technology in over 100 countries.

Download

CCS Storage Indicator (CCS-SI)
CCS Storage Indicator (CCS-SI)

16th October 2018

Topic(s): Capacity development, Carbon capture, Law and regulation, Policy, Use and storage (CCUS)

The availability of storage resources is the ultimate pre-requisite for CCS deployment. For global CCS deployment, each country needs to know where, and how much, CO2 can be stored. Each nation needs to characterise, explore and appraise a national portfolio of accessible, commercially-viable storage sites ready for CCS Facilities.

The CCS-SI tracks the development of storage resources for 80 countries. The 2018 scores confirm an overall improvement since the 2015 CCS-SI with twelve nations having mature, or near-mature, storage resources to enable wide-scale CCS.

Download

Legal & Regulatory Indicator (CCS-LRI)
Legal & Regulatory Indicator (CCS-LRI)

16th October 2018

Topic(s): Carbon capture, Law and regulation, Policy, Use and storage (CCUS)

Law and regulation remains a critical element of a government’s policy response to support the development and deployment of CCS. Robust legal and regulatory frameworks provide certainty for businesses eager to engage in innovation, and the deployment of CCS.

The CCS-LRI offers a detailed examination and assessment of national legal and regulatory frameworks in 55 countries and examines a range of legal and regulatory factors likely to be critical for the regulation of the technology.

Download

Callide Oxyfuel Project – Final Results
Callide Oxyfuel Project – Final Results

4th May 2018

The Callide Oxyfuel project was undertaken in three parts:

  • Stage 1 – Demonstration of oxyfuel CO2 capture;
  • Stage 2 – assessment of CO2 storage options and potential in Queensland and CO2 injection testing; and
  • Stage 3 – Project wrap up and commercialisation. 

The work and outcomes of these three phases are summarised in this report.

Download

Brazilian Atlas of CO2 Capture and Geological Storage
Brazilian Atlas of CO2 Capture and Geological Storage

22nd December 2017

The Brazilian Atlas of CO2 Capture and Geological Storage presents the main CO2 sources in the country in relation to their type and annual emission. The Atlas also presents the existing pipeline infrastructure and rank possible areas (basins) for geological storage in terms of their prospectivity. Legal issues are also discussed in addition to the basic principles of the technology. The Atlas represents an important step in the development of CCS in Brazil and the dissemination of knowledge of these technologies, contributing to actions leading to mitigation of climate change. It can be used as a reference for CCS in Brazil, but also as a general textbook on CCS technologies.

Download

Principles for Best Practice Geomechanics for CCS Injection Operations and its Application to the CarbonNet Project
Principles for Best Practice Geomechanics for CCS Injection Operations and its Application to the CarbonNet Project

27th October 2017

Organisation(s): CarbonNet Project

CarbonNet is investigating the potential for establishing a commercial scale CCS network, bringing together multiple CO2 capture projects in Victoria’s Latrobe Valley, transporting the CO2 via pipeline and injecting it deep into nearshore underground storage sites in the Gippsland region. It plans an initial capacity to capture, transport and store in the range of 1-5 Mtpa of CO2 during the 2020s.

The latest report, titled  “Principles for Best Practice Geomechanics for CCS Injection Operations and its Application to the CarbonNet Project”, found the basin in which the CarbonNet Project site is targeting has the ideal geological conditions for storage. A CarbonNet Project study shows that their storage site would not be prone to seismicity and that the selected site is suitable for the permanent storage of CO2.

Download

Report led by researchers from University College London: "The role of CCS in meeting climate policy targets"
Report led by researchers from University College London: "The role of CCS in meeting climate policy targets"

24th October 2017

Organisation(s): Global CCS Institute

The Global CCS Institute has commissioned an authoritative and independent report that examines policy issues in the deployment of CCS, in accordance with global commitments to limit temperature increases to below 2 and 1.5 degrees Celsius. It outlines comprehensively the arguments made for and against CCS deployment, examines the experience of CCS deployment to date in a range of countries, draws lessons from other analogous technologies, and explores findings from integrated energy systems modelling.

The report is intended to inform a wide variety of stakeholders on the relative importance of the full set of policy instruments available to promote CCS and emission reduction technologies more generally.

The report was led by authors Dr Nick Hughes and Professor Paul Ekins at the UCL Institute for Sustainable Resources, as part of a consortium that drew in other world-leading expertise from the UCL Energy Institute, UCL Faculty of Laws, University of Edinburgh and the UK Energy Research Centre. The project team brought together extensive experience on CCS technology, legal and regulatory issues connected to CCS, low-carbon energy policy-making, energy systems analysis and the governance of energy technologies.

Download

The role of CCS in meeting climate policy targets
The role of CCS in meeting climate policy targets

23rd October 2017

Organisation(s): Global CCS Institute

Topic(s): Carbon capture, Use and storage (CCUS)

Carbon capture and storage (CCS) refers to a set of technologies that may offer the potential for large-scale removal of CO2 emissions from a range of processes – potentially including the generation of electricity and heat, industrial processes, and the production of hydrogen and synthetic fuels. CCS has both proponents and opponents. Like other emerging low carbon technologies, CCS is not without risks or uncertainties, and there are various challenges that would need to be overcome if it were to be widely deployed. Policy makers’ decisions as to whether to pursue CCS should be based on a judgement as to whether the risks and uncertainties associated with attempting to deploy CCS outweigh the risks of not having it available as part of a portfolio of mitigation options, in future years.

Download

The role of CCS in meeting climate policy targets
The role of CCS in meeting climate policy targets

23rd October 2017

Organisation(s): Global CCS Institute

Carbon capture and storage (CCS) refers to a set of technologies that may offer the potential for large-scale removal of CO2 emissions from a range of processes – potentially including the generation of electricity and heat, industrial processes, and the production of hydrogen and synthetic fuels. CCS has both proponents and opponents. Like other emerging low carbon technologies, CCS is not without risks or uncertainties, and there are various challenges that would need to be overcome if it were to be widely deployed. Policy makers’ decisions as to whether to pursue CCS should be based on a judgement as to whether the risks and uncertainties associated with attempting to deploy CCS outweigh the risks of not having it available as part of a portfolio of mitigation options, in future years.

Download

Overview of Carbon Capture and Storage (CCS) Demonstration Project Business Models: Risks and Enablers on the Two Sides of the Atlantic
Overview of Carbon Capture and Storage (CCS) Demonstration Project Business Models: Risks and Enablers on the Two Sides of the Atlantic

13th September 2017

Topic(s): Carbon capture, Use and storage (CCUS)

There are 15 large-scale CCS projects operating globally. Ten out of these fifteen projects, are located in North America [1]. The European Union’s (EU) stated ambition was to have up to twelve operating CCS projects by 2015 [2], however this goal was not accomplished. The two projects currently operating storage in the European Economic Area, Sleipner and Snøhvit, are located in Norway. Because of this disparity in the number of projects operating in North America and in Europe – ten vs. two – we have analysed business models of major CCS projects in North America and in Europe, with an aim to identify risks and enablers in CCS project financing development on both continents. We find that successful CCS project development depends on multiple factors, such as (i) clarity of regulatory frameworks, (ii) efficiency of permitting processes, and (iii) early and sustained stakeholder engagement for public acceptance. However, project finance remain the most challenging piece.

Download

Current status of global storage resources
Current status of global storage resources

21st August 2017

Organisation(s): Global CCS Institute

Topic(s): Carbon capture, Use and storage (CCUS)

The successful deployment of carbon capture and storage as a means to mitigate greenhouse gas emissions requires the availability of significant geological storage capacity. Assessments that identify suitable sedimentary basins and their capacity are the first logical step in defining global carbon capture and storage potential. This paper presents a collation and summary of the current status of storage assessments worldwide known as the Global Storage Portfolio. The analysis found that there are substantial storage resources available in most regions of the world. Almost all nations that have published regional assessments have identified sufficient storage resources to support multiple carbon capture and storage projects. This analysis also found that the methods to determine and classify resources are highly variable across regions despite reliable assessment methodologies being available. Case studies on Europe and Southeast Asia discuss the different approaches being undertaken for their respective regional assessments and their progression towards being ready for the deployment of CCS.

Download

Newsletter

Get the Latest Updates and Invites to Exclusive Events